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ANNUAL REPORT OF THE USAMRMC FUNDED ACTIVITY
Title of the grant: Metastatic progression of breast cancer by allelic loss on chromosome 18¢21.
1. Introduction/ Project Overview/ Scientific Progress and future directions:

The majority of molecular genetic studies on breast cancer have focused on familial predisposition
and there has been a lack of serious effort to understand the molecular basis of the involvement of
genetic determinants in the progression to metastatic cancer. The fact that 18q loss has been associated
with the advanced carcinoma stage of other cancers suggests that the genes inactivated by this alteration
in breast cancer could also be potentially associated with the conversion of benign tumors to
malignancy and metastatic progression of the cancer. Unlike pancreatic, colon, lung and ovarian
cancers, the lack of mutations in breast cancer in the Smad2 and Smad4 genes, localized to
chromosome 18q supports the existence of tissue specific genes that are specifically targeted for
inactivation in breast cancer and the urgent need for their identification.

Disabling Smad signaling in cancer has become increasingly recognized as an important step that
affects processes such as loss of growth inhibition, promotion of angiogenesis and metastasis and the
epithelial mesenchymal transition (1). Although significant progress has been made in elucidating the
association between genetic alterations in the Smad4 gene and cancer, the nature of defects involving
the other Smads has been elusive, potentially due to alternative mechanisms or targets that result in the
loss of or altered signaling end effects. Our survey of the various Smad genes has provided the first
clues in identifying the Smad8 gene as an important target for loss of expression in nearly 30% of
breast cancers. The epigenetic alterations that underlie these overall abnormalities in signaling could
occur at the level of regulation of gene expression or processing of the transcripts. We believe that it is
a significant finding as even the most celebrated tumor marker, HER/neu gene amplification, also
occurs in about 20%-30% breast cancer cases. We hypothesize that Smad signaling downstream of the
BMPs involving Smad8 could be an important pathway in breast tissue and inactivation or loss of
Smad$ is a critical tissue specific event in breast tumorigenesis.

On the other hand, there is also emerging data, which supports a potential role for signaling events
mediated by the Smad4 gene, localized to 18921, in the metastatic progression of cancer. Recent
studies suggest that disabling Smad4 signaling leads to increased expression of VEGF (vascular
endothelial growth factor), a primary regulator of vascular development, which plays a critical role in
angiogenesis and metastasis, and decreased expression of thrombospondin-1 (TSP-1), an inhibitor of
angiogenesis (2). We therefore hypothesize that normal Smad4 signaling is required to maintain
suppression of metastasis, and inactivation of this signaling is a major step in the development of
metastatic breast cancer. Chromosome 18q loss is less frequently observed in breast cancer compared to
other cancers and the apparent lack of intragenic mutations in the Smad4 gene suggests that signaling
mediated by Smad4 in suppressing metastatic progression of breast cancer may arise primarily from
alterations in other key mediators or effectors which participate in the execution of these signaling
events. We propose to identify the mediator and effecter genes, which regulate metastatic progression
of breast cancer upon inactivation of the Smad4 signaling pathway using appropriate tumor cell lines as
well as experimentally developed derivative test and control cell lines as model systems.

2. Original tasks and the rationale for modifications in the experimental approach:
Although our original proposal was to primarily seek alternate target genes that are either
localized to chromosome 18q or novel Smad genes involved in metastatic breast cancer, we
reformulated our original goals to consider alternate modes of inactivation or loss of function of
already known Smads as well as the regulatory and/or effector gene products of the central
player, Smad4. The apparent lack of additional target genes localized to 18q21 prompted us to
expand our focus to consider inactivation of overall Smad4 signaling pathways due to the fact
that disruption or unscheduled activation of critical genes mediating these events could also have
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similar effect as direct targeting of the Smad4 gene. The original tasks, modified expanded tasks
and the justification for the slight shift in our original aims are as follows:

Task 1. Directed isolation of SMAD genes localized to 18q21 as potential target genes.
Expanded Task 1. Determination and identification of genetic and epigenetic alterations in all
known and novel Smads as potential target genes.

Rationale: Although the TEGD (targeted expressed gene display) technique developed by us
has not revealed any novel Smads to date, it has enabled the successful detection of previously
unknown loss- or over-expression of the different Smad genes in breast tumors/ cell lines.

Task 2. Positional cloning of genes localized to chromosome 18q21.

Expanded Task 2. Identification of alternate target genes involving the Smad4 signaling
pathway.

Rationale: Despite the lack of inactivation of other known/ predicted genes localized to 18q21,
the tissue specific inactivation of gene products that either regulate or mediate the effects of
Smad4, the central player in the Smad signaling pathways, could lead to similar outcomes as
inactivating the Smad4 gene itself.

Task 3. Evaluation of candidate target genes. This task remains unmodified.

We have made substantial progress toward the identification of alternate targets for inactivation of
the Smad signaling pathways in breast cancer. We have also laid the groundwork for the discovery of
Smad4 regulatory and responsive genes as alternate targets for inactivation/ activation in the mediation
of metastatic breast cancer. Furthermore, we believe that these studies could shed light on the molecular
basis of breast cancer metastasis.

3. Body: Procedures and progress report:
Evaluation of Smad alterations in breast cancer.

The analysis of genetic alterations in the various Smad genes in previous studies led us to
conclude that mutations in Smad2 and Smad4, localized to chromosome 18q, are rarely observed
in breast cancer (1). Therefore, we decided to survey the differences in overall expression
patterns of the various Smads in breast cancer using the TEGD technique. The TEGD analysis
suggested to us that loss of expression of Smad4 and Smad8 and over-expression of the Smad7
gene could be major targets for aberrant Smad signaling events in subsets of breast cancers
(Figure 1). We decided to further validate these observations and determine the significance of
this abnormality in breast cancer using semi quantitative RT-PCR to analyze the expression
patterns using appropriate gene specific primer pairs (Figure 2). We plan to extend these studies
to a larger set of breast cancer cell lines and tumors derived from various stages of cancer, and
also probe for alternate modes of inactivation in addition to the analysis of gene expression. The
initial step to determine gene inactivation will again be by semi quantitative RT-PCR (3; Figure
2). The presence or absence of expression, and the splice variants of the various Smads will be
determined by this method. Subsequently, initial mutation searches will be conducted by IVSP
analysis and by direct sequencing (3). We will also investigate whether the loss of expression of
Smads is due to gene silencing by promoter DNA methylation.

Overall, the preliminary data so far suggested to us that over-expression of Smad?7 or loss of
expression of the Smad8 gene could be major targets for aberrant Smad signaling events in subsets of
breast cancers (Figures 1 & 2). Based on these preliminary data, we plan to acquire commercially
available antibodies or raise them to Smad 7 and Smad 8 and determine the feasibility of conducting
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immunohistochemistry (THC) on control and test cell lines to assess whether over- or under- expression
respectively could eventually be applied to tumor samples (not within the scope of this proposal) for
diagnostic and or prognostic evaluations.

B1 B2 B3 B4 B5B6 B7 B8

— Smad4

Smadl
= Smad5

Smad2

Smad8

Smad6
~  Samd7

Figure 1. Targeted expressed gene display (TEGD) analysis of Smads in breast cancer.

PCR products for SMADs using degenerate primers were analyzed by TEGD. Lanes B1-8 correspond to PCR
products generated using cDNA templates from the normal mammary tissue (B1) and tumor (B2-8) samples. The
arrows point to distinct PCR products that were abnormal compared to the normal control. The positions of various
Smad genes and their variants as identified from sequence analysis are indicated on the right panel.

A. NB2 3 4 5 6 78 91011 12 1314

Figure 2. Semi-quantitative RT-PCR analyses of Smad expression in breast cancer.

Total RNA was prepared using the Trizol method from the indicated breast cancer samples and analyzed by
RT-PCR (Lanes 1-14). NB refers to sample from normal breast tissue. Smad3c. and Smad3 are two of the major
differentially spliced forms of Smad3. Smad8c, Smad8f and Smad8y are three of the major differentially spliced
forms of Smad8 which correspond to the full-length, deletion of exon 2, and deletions of exons 2&3, respectively.
Analysis of the f-Actin gene is used for normalization and quantitation of the Smad genes.

Identification and evaluation of Smad4 signaling mediator/ effector genes involved in
metastatic breast cancer.

A recent study analyzing the pancreatic adenocarcinoma cell line Hs766T, which harbors a
homozygous deletion of the Smad4 gene, reported an increase in the expression of VEGF and a
decrease in expression of TSP-1 (2). These observations suggested that disabling Smad4

signaling events potentially plays a role in promoting the increased propensity for angiogenesis

6




Annual Report 2002: USAMRMC: Grant# DAMD17-01-0160: P.I: Sam Thiagalingam, Ph. D.
Metastatic progression of breast cancer by allelic loss on chromosome 18q21.

and metastasis of cancer. We propose to test this phenomenon in breast cancer metastasis. We
have chosen the Smad4 inactivated colon cancer cell line HCT116 (Smad4-/-) that was
experimentally generated to be null for Smad4 and a breast cancer cell line MDA-MB 231,
which harbors a deletion of exon 5 in one allele and a point mutation (P303L) in the second
allele, thus effectively inactivating the Smad4 gene. We have generated derivative stables, from
these Smad4 null/inactive cell lines, that harbor wild-type Smad4 or their corresponding vector
controls as the experimental model systems to determine the effect of Smad inactivation in
metastatic breast cancer (Figure 3A). The ability to complement Smad4-mediated
transactivation in these stable isogenic model cell lines has also been investigated using
luciferase reporter assays to confirm the intactness of the Smad4 signaling pathway. These cell
lines were transfected with pSBE4-Luc (Luciferase reporter with the Smad4 binding site) to
determine whether the expression of Smad4 mediates reporter activity. Our preliminary
experiments in which measurements made after 24 hours of culturing with and without TGF[3
suggest that Smad4 signaling could be reconstituted (Figure 3C).
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Figure 3. Relationship between Smad4 status and the expression of VEGF.

A. Western blot analysis to screen for stable Smad4 over-expression in test and control cell lines. Lanes 1&2 and
6&7 are stable transfectants of the pCMV vector while Lanes 3-5 and 8&9 are stable transfectants of the pCMV-
Smad4 of the indicated cell lines. B. Effect of over-expression of the Smad4 gene on VEGF and VEGF-C. Total
RNA was analyzed with the RiboQuant multi-probe template set (hAngio-1; BD-PharMingen, San Diego, CA) to
detect the indicated mRNAs. 132 and GAPDH were included in each template set as internal controls. C. Smad4
signaling as determined by Smad4 responsive luciferase. pPSBE4-Luc was transfected into the indicated stable cell
lines and assessed for Luciferase activity after 24 hours of cell culture.

Furthermore, preliminary experiments are encouraging as the introduction of wild-type
Smad4 into the colon cancer cell line HCT116 with the deletion of Smad4 exhibited a decrease
in VEGF expression (Figure 3B). The lack of complete suppression of VEGF expression in
these experiments could suggest that under the conditions of the experiment the competing
pathways that promote VEGF expression could be still operative (e.g., HIF-1a) in these cells
despite the fact that Smad4 could function as a major suppressor.

We are also in the process of carefully analyzing our breast cancer models and determining
the identities of the various genes that may be differentially regulated and potentially participate
in Smad4 mediated processes in the metastatic progression of breast cancer. We plan to
undertake the analysis of a wide spectrum of mediator/effector genes/ESTs for their up- or
down-regulation using microarrays (Affymetrix).

Once legitimate metastasis mediator and effector gene(s) are identified, evaluation of the
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status of the candidate gene(s) for inactivation/ activation in metastatic breast cancer will
commence as described in the original proposal (3; Task 3).

4. Key research accomplishments:

Our unexpected preliminary finding that 30% of the breast cancers we sampled exhibited loss
of Smad8 expression is very significant as it is equivalent to other established and highly valued
markers such as Her/neu. The identification of target gene(s) that disable Smad signaling to
promote breast cancer could potentially provide key arsenals to combat breast cancer.

We have identified/ generated appropriate tumor cell lines as well as experimentally
developed derivative test and control cell lines as model systems to identify and isolate the
metastatic breast cancer mediator and effecter genes involving Smad4.

5. Conclusions:

(1) Loss of expression of Smad4 and Smad8 and over-expression of the Smad7 gene are
potentially major mechanisms for inactivation of Smad signaling in breast cancer.

(2) The loss of Smad8 expression in 30% of the breast cancers is very significant as it is
equivalent to other established and highly valued tumor markers such as Her/neu.

(3) The identification of target gene(s) that disable Smad signaling to promote breast cancer
could potentially provide not only novel and valuable diagnostic and prognostic tumor
markers but also key arsenals to combat breast cancer.

6. References:

1. Thiagalingam, S., K-h.Cheng, R. L. Foy, H. J. Lee, D. Chinnappan, and J. F. Ponte. 2002.
TGFp and its Smad connection to cancer. Current Genomics 3: 449-476.

2. Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Luttges
J, Kloppel G, Graeven U, Eilert-Micus C, Hintelmann A, and Schmiegel W. 2000.
Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Pro.
Natl. Acad. Sci. 97: 9624-9629.

3. Thiagalingam, S. 2001. Molecular detection of Smad4/Smad? alterations in colorectal
tumors: Colorectal Cancer Methods and Protocols. In Methods in Molecular Medicine. S.
M. Powell (Ed) Humana Press Inc., New Jersey, 50: 149-165.

7. Scientific presentations/ publications relevant to this grant:

Seminars by Dr. Sam Thiagalingam:

LOH: A predictor to map tumor suppressor genes involved in cancer and the molecular
mechanisms of their occurrence. DDC Seminar, Medical College of Wisconsin, Milwaukee,
October 15, 2001.

The Smad connection to cancer. Boston University School of Medicine Rheumatology
Conference. September 4, 2002.

Publications:

Cheng, K-h., H. J. Lee, J. F. Ponte and S. Thiagalingam. 2002. Identification of alternate targets
for the inactivation of Smad signaling in cancer using a novel method: Targeted Expressed
Gene Display. Manuscript in preparation.

Thiagalingam, S., K-h.Cheng, R. L. Foy, H. J. Lee, D. Chinnappan, and J. F. Ponte. 2002.
TGFB and its Smad connection to cancer. Current Genomics 3. 449-476.

Thiagalingam, S., R. L. Foy, K-h.Cheng, H. J. Lee, A. Thiagalingam, and J. F. Ponte. 2002. Loss
of heterozygosity as a predictor to map tumor suppressor genes in cancer: molecular basis of its
occurrence. Current Opinion in Oncology 14(1): 65-72.

8




Principal Investigator: Thiagalingam, Sam

APPENDIX | -Reprints

Relevant publications by the P. I.:

1. Thiagalingam, S., K-h.Cheng, R. L. Foy, H. J. Lee, D. Chinnappan,
and J. F. Ponte. 2002. TGF-p and its Smad connection to cancer.
Current Genomics 3: 449-476.

2. Thiagalingam, S., R. L. Foy, K-h.Cheng, H. J. Lee, A. Thiagalingam,
and J. F. Ponte. 2002. Loss of heterozygosity as a predictor to map
tumor suppressor genes in cancer: molecular basis of its occurrence.
Current Opinion in Oncology 14(1): 65-72.




Current Genomics, 2002, 3, 449-476 449

TGFP and its Smad Connection to Cancer

S. Thiagalingam*, K-h. Cheng, R. L. Foy, H. J .’Lée, D. Chinnappan and J. F. Ponte

Genetics and Molecular Medicine Programs and Pulmonary Center, Department of Medicine and.
Department of Pathology & Laboratory Medicine, Boston Umverszty School of Medicine, 71 5
- Albany Street, Boston, MA 02118, USA

- . Abstract: The resistance to growth inhibition commonly observed in a variety of TGFp disabled
. human cancers, the potential role of TGFB in the exacerbation of malignancy and the effects of
TGFB in suppressing the-immune system, all emphasize the importance of pathways mediated by

this polypeptide to the neoplastic process. Early. investigations to understand the molecular basis oo

of cancer due to defects in TGFp signaling were concentrated on examining the abundance of | - j‘
biologically active TGFPand its binding to TGFB receptors. However, major breakthroughs in , '

understanding the ‘molecular basis of the TGFf mediated effects in cancer came from genetic evidence for inactivation of
the various players in its signaling cascade. The vast majority of current evidence is derived from the identification of
mutations causing structural defects in TGFB receptors and Smad genes, the downstream effectors of the TGFp signaling
pathway that have emerged from the analysis of human cancers. The involvement of Smads at the receptor level upon
activation by a TGFf} bound receptor, their participation in signal transmission to the nucleus and their direct roles in the
* regulation of target genes have made the various Smad genes critical targets for inactivation of TGFf sxgnalmg in cancer.
To date, eight human homologues of the Smad genes have been identified and are classified into three distinct classes
based on their structure and function. In this review, we discuss TGFP signaling via the Smads and the known and
predicted points at which TGFf signaling could become altered in human cancer.

INTRODUCTION

The signaling pathways mediated by the members of the
transforming growth’ factor-beta (TGFP) family are
implicated in a number of biological processes including cell
differentiation and proliferation, determination of cell fate
during embryogenesis, cell adhesion, cell death,
angiogenesis, metastasis and immunosuppression [1-4]. Due
to the wide array of functional consequences mediated by its
signaling events, TGFpP could impact tumorigenesis by
affecting any one or a combination of the following
processes: (1) altering the delicate balance between cellular
proliferation and apoptosis; (2) affecting induction of
extracellular matrix proteins such as proteoglycans,
collagens, fibronectin, laminin, tenascin and vitronectin and
regulating their breakdown by extracellular proteases and
metalloproteinases by controlling the induction of their
inhibitors such as plasminogen activator inhibitor (PAI-1)
and tissue inhibitor of metalloproteinase (TIMP); and (3)
dlsablmg the tumoricidal activity or cytokme production of
the immune system [5-11]. The major mechanisms that
disrupt the carefully regulated balance of these events may
consist of changes in the induction of gene expression
patterns and in the functionality of proteins, which are affec-
ted by internal or external cues or familial and/or sporadic
genetic changes. Although there has been significant
progress in unraveling some of the genetic and epigenetic

*Address correspondence to -this author at the Genetics and Molecular
Medicine Programs, Department of Medicine and Department of Pathology
& Laboratory Medicine, Boston University School of Medicine, 715 Albany
Street, Boston, MA 02118, USA; Tel: 617—638 6013; Fax: 617-638 4275;
E-mail: samthla@bu edu
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alterations that underlie these overall abnormalities in

_signaling by TGFB, the nature and cues prompting changes

that occur at the level of regulation of géne expression,
protein synthesis and/or post-translational modifications will
most likely be elucidated only by the efficient application of
high throughput methodologies such as gene expression
microarrays and proteomics.

TGF-f SIGNALING

Although TGFf was originally discovered for its positive
role in transformation and tumor progression, most of the
recent efforts have focused on the understanding of the
mechanism of epithelial cell growth inhibition [12-14]. The
TGFp family of factors is comprised of nine subfamilies/
members with homology at the amino acid level ranging
from 23 to 92%. The BMP (Bone Morphogenetic Protein), -
activin and TGFf subfamilies have been the most widely
studied. The TGF family members bind to specific
receptors, which consist of two major subfamilies, type 1
(RI) and type I (RII) receptors. These receptors are
structurally similar and have cysteine.rich extracellular
regions .and an intracellular kinase domain with serine/
threonine kinase actnvnty [15,16]. The RI receptor has a
conserved 30 amino acid segment adjacent to the kinase

. domain rich in glycine and serines known as the GS region

which forms a wedge against the catalytic center [17].
TGFp factors, which are dimers, bring together the RII and
RI receptors into a heterotetrameric. complex. The RII
receptor’s kinase domain becomes constitutively active and -
phosphorylates the GS domain of the RI receptor. Activated
RI receptors can then mediate thelr activities through the

© 2002 Bentham Science Publishers Ltd.
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" Smad proteins. The role of vertebrate Smad (Sma and Mad)
* proteins in TGFP signaling was predicted from their high
level of homology to the Mad (Mothers against dpp) from
Drosophila and the Sma-2, Sma-3 and Sma-4 proteins from
- Caenorhabditis elegans in analogous signaling pathways
[18-22]. .

To date at least eight homologues of the Smad genes
“have been identified and shown to be downstream of the
serine/threonine kinase receptors (Table 1, Fig. 1). Smads are
molecules with a relative mass of 42Kd-60Kd composed of
two regions of homology (Mad Homology (MH) domains) at
the amino and carboxy terminals of the protein termed the
MH1 and MH2 domains, respectively, which are separated
by a proline rich acidic linker region of variable length and
sequence [34-36]. The amino terminal MH1 domains share
40-94% homology among Smads while the carboxy terminal
MH2 domains are 38-98% homologous in their amino acid
sequence (Fig. 1), [35]. The MH2 domain is involved in
homo and heteromeric complex formation, as well as in
transcriptional activation and repression, whereas the MHI1
domain has DNA binding activity [36-38]. The MH2 domain
of Smad2 and Smad3 interacts with the RI receptor [39].
Prior to activation of the receptor-regulated Smads by
receptors, MH1 and MH2 domains interact with each other
resulting in auto-inhibition [40,41].

The Smad family of proteins is divided into three distinct
classes based on their structure and function [12]. The first
category consists of pathway-restricted or receptor regulated
Smads (R-Smads): Smadl, Smad5 and Smad8 (also known
as MADH6/Smad9 in humans), which are specifically
involved in BMP signaling whereas Smad2 and Smad3 are
TGFp/activin pathway restricted. These Smads are directly
phosphorylated by RI receptors after phosphorylation of the
RI receptor by the RII receptor. The pathway restricted
Smads have a characteristic Ser-Ser-X-Ser (SSXS) motif in
their C-terminal region. The two-most C-terminal serine
residues of these Smads are phosphorylated by RI receptors
[42-44]. Phosphorylation at these sites has been shown to be
necessary for Smad2 to interact with the second class of
Smads known as the common mediator Smad (Co-Smad)
[45]. Smad4 is the only member of this class of Smads

"Table 1. Human SMAD Genes and Cancers

Thiagalingam et al.

known in mammals. However, the recent identification of
two Smad4 proteins (Xsmad4a and Xsmad4f) in Xenopus
opens up the possibility that homologues of Smad4 may
exist in mammals [46]. Smad4 lacks the C-terminal SSXS
motif and is not phosphorylated by RI receptors [41]. Smad4
is involved in all distinct pathways and plays a central role
by forming heteromeric complexes with the R-Smads.

SARA (Smad anchor for receptor activation) is a FYVE
domain protein that only interacts with the MH2 domains of
Smad2 and Smad3 [47]. SARA exhibits preferential binding
to unphosphorylated Smad2 and becomes released when
Smad2 is phosphorylated by the TGFPRI receptor. The
Smad2-SARA and Smad2-Smad4 complexes apparently
exist in a mutually exclusive manner. The double zinc finger
FYVE domain of SARA is believed to be involved in
directing the localization of R-Smads to the membrane
where the TGFB RI receptors are located and thus increasing
the effective concentration of Smad signaling molecules -in
their vicinity. Once the R-Smad molecules become
phosphorylated and released from the SARA adaptor protein,
phosphorylated R-Smads form R-Smad-Co-Smad complexes
that translocate from the cytoplasm to the nucleus.

The crystal structure of the Smad4 MH2 domain has been
resolved [35]. The monomer contains a P-sheet sandwich,
capped at one end with a group of three large loops and an
o-helix (loop-helix domain) and at the other end by a triple
o-helix structure. These monomers assemble to form a
trimeric structure in the crystal with the loop helix domain of
one monomer interacting with the triple helix of the next; the
resulting structure resembles a disk. On the face of the disk
opposite the amino terminal side, the third loop (L3) from
the loop-helix is exposed on the surface. It has been
suggested that this loop is critical in mediating the formation
of a hexameric complex between Smad4 trimers and trimers
of phosphorylated R-Smads [48,49]. In addition to these
predictions based on crystal structures, other models for the
nature of Co-Smad and R-Smad hetero-oligomeric
complexes have been proposed from biochemical and
structural studies, which include heterohexamer, heterotrimer
and heterodimer formations. [48-53]. At the time of this
writing, the most recent biochemical and functional data

Gene Map position v Alteration§ in cancers Refgrence(s)'
. SMADL_ . _..  aqas3t Notdetected | - 23]
SMAD2 . A 18921 Colon, liver and lung [23,24,25]

“ .S'M4D3 T 15q21-22 Not detected [23,26]
SMAD4 © 18q21 i‘v’]e‘:"l:r:do‘fa'r’:?; d' :‘;ﬁi’:::: [21,23.26-31,151]
SMADS _ 5q31 Not detected [23,26]
SMADG6 15q21-22 Not detected [23,26])
SMAD7 18921 Not detected [23,26,32]
SMADS 13q12-14 Not detected ' [33]




TGFP and its Smad Connection to Cancer

Current Genomics, 2002, Vol. 3, No. 5 451

GENE LOCATION MHla MH1b

‘ Smad3

*Smai ssar TP IR <o
smaAg s I E—— LIS ITISE

Smadt’; )

SmadS5

MH2a MH2b TOTAL HUMAN
’ AA ACC#

U59912

467 U599

425  U68019

552 U44378

465 UT3825

Smadﬁ

495  AF035528

Smad7

Smad8

426  AF015261

431  NM_005905

Fig. (1). Amino acid alignment of the known human Smad homologues.

Mad homology (MH) domains, labeled MH1a, MH1b, MH2a and MH2b, represent stretches of sequence that are highly related in Smad
proteins. The thin vertical lines denote identical residues in at least five genes. The horizontal lines signify gaps introduced in order to
optimize the alignment. Using Smad| as a reference, MH1a, MH1b, MH2a and MH2b extend from codons 20 to 45, 68 to 145, 265 to 367,
and 402 to 454, respectively. The inhibitory Smads, Smad6 and Smad7, do not possess MH1 domains, but the two of them do share regions
of homology in their N-termini. The chromosomal position is shown in the second column, and accession numbers for the human Smad

genes are shown in the last column.

strongly support the existence of a heterodimer between a
Co-Smad and a R-Smad as the predominant basic functional
unit [52,53].

The structural analysis of the Smad3 MH1 domain
showed that the domain adopts a compact globular fold, with

four o-helices, six short B strands, and five loops. A B-

hairpin loop mediates the direct contact with DNA in the
major groove. The B-hairpin loop is comprised of residues
Leu-75, GIn-76, and Val-77 of strand B2, residues Arg-80,

Lys-81, and Gly-82 of B3, and two connecting residues, Ser-

78 and His-79. The B-hairpin is among the most highly
conserved regions in Smad proteins and all the residues
except the two at the turn of the B-hairpin are invariant
among mammalian Smads [35]. Smad3 and Smad4 bind to
DNA via the MH1 domain at sequences that contain AGAC,

called Smad Binding Elements (SBEs) [55-57]. It has also .

been shown that an extra stretch of amino acids N-terminal
to the B-hairpin loop present in Smad2 (derived from exon 3)

affords steric hindrance which inhibits DNA binding of the
homo-oligomer of Smad2 [35,55,58].

The regulation of Smad signaling could occur at several
levels including direct effects on Smad molecules affecting
their functional status or by determining their stability or
half-life. Upon translocation into the nucleus, each of the R-
Smad-Co-Smad complexes could activate a specific set of
genes through cooperative interactions with DNA and other
Smad interacting DNA-binding proteins (SIDBP) and/or
cofactors. R-Smad translocation to the nucleus is not
dependent upon Smad4, but Smad4 translocation into the
nucleus requires an activated R-Smad [59,60]. It has been
shown that the MH1 and MH2 domains of Smads interact
with a number of factors in the nucleus to determine the
specificity of gene activation or repression (Table 2) [61,62].
This specificity for DNA binding of Smad transcription
factor complexes to regulatory regions of genes would
theoretically lead to transcriptional activation or repression
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Table2. Cofactors of Sniad Transcriptional Regulation
Co-Factor l Smad/ Domain Contacted Molecular Basis of Acti;'ity Reference(s)
Activators »
AML/PEBP2/CBFA Smad2, 3 MHI, MH2 Cooperate with Smads to induce gene expression [82-84]
ATF2  Smad3 MHI | “ o , : 5]
Mixer/milk Smad2 MH2 “ - [86)
Fastl/Fast2 Smad2, 3 MH2 “ [63, 64, 86]
 ¢-Fos * Smad3 MH2 “« - 57
c-Jun, JunB, JunD Smad3 MH]1, Linkeér “ : . " [87-89} -
SP1 Smad2, 3, 4 MH1 and/or MH2 “ [90-94] )
CBP and p300: .Smad2, 3 MH2; Smadé activation domain Opens chromatin structure by histone acetylation [55, 57, 88, 95-98]
MSG1 Smad4 MH2 ' Interacts with CBP and p300 199, 100}
Repressors
AML/ETO . Smad2, 3 MH2 Unknown [101)
SIP1 . ~ Smad2,3MH2 Unknown 74,81
TGIF : ' Smad2, MH2 _ Recruits histone deacetylases (38,751
ElA . . Smad3 MH2 " Prevents intcractidn with CBP and p300 {102}
Evi-1 Smad3 MH2 Prevents Smad3 binding to DNA [103, 104]
Ski, SnoN SmadZ, 3,4MH2 Recruit repressors, N-CoR, mSin3 and histone [37,77-80]1 »
: deacetylases. Bind DNA

of a unique set of gene(s) with a high level of specificity for

the tissue and/or the overall physiological signal being'

transduced. The binding of an activated Smad transcription
complex to specific regulatory regions and transactivation
may be defined in part by subsequent SIDBPs such as
FAST1, FAST2 and Jun/Fos [59, 63-67]. On the other hand,
transcriptional specificity could also occur by recruitment of
factors interacting with Smads by protein-protein

interactions such as in the cases of p300 and CBP (CREB-
binding protein) [68-71]. p300 and CBP are histone acetyl

transferases (HAT) that increase transcriptional activation
due to their ability to alter the nucleosome structure via
chromatin remodeling by hyperacetylation of neighboring
chromatin and by recruitment of the RNA polymerase
holoenzyme to the promoter [72,73]. Similarly, DNA
binding factors such as SIP1 and TGIF or non-DNA binding
factors such as Evil, Ski and SnoN could interact with the
Smad proteins in the transcription complex leading to the
repression of transcription: [74-81]. The homeodomain
protein TGIF (TG interacting factor) is believed to mediate
Smad-dependent repression of transcription either by
recruiting histone deacetylases (HDACs) or by competing
with p300 or CBP for association with Smads [1,75].
Alterations in the relative levels of the coactivators or
corepressors in the cell depending on the tissue type and/or
physiological state would ultimately determine whether
‘TGFBsignaling would result in activation or repression of
specific genes.

The third class of Smads includes Smad6 and Smad7
which were identified as anti-Smads or inhibitory Smads (I-
Smad) due to their ability to act as inhibitors of TGFB
signaling. Smad6 and Smad?7 are rapidly induced by TGFp-
like molecules, IFNy, and a number of other growth factors

. and cytokines and they elicit negative feedback regulation of

Smad signaling pathways. Smad6é and Smad7 interact with
activated RI receptors with high affinity to prevent access to
RI receptors by R-Smads and thus inhibit phosphorylation of '
R-Smads [32,105,106]. STRAP (serine-threonine kinase
‘receptor associated protein) contains a WD domain and
associates with Smad7 as well as with the RI receptors

" augmenting ‘the inhibitory~ effects of Smad7 [90,107].

Furthermore, it has been postulated that Smad6 may also
compete with Smdd4 for association with activated Smad! in

- BMP signaling, and may possibly function as a co-repressor

for transcription via its interaction with Hoxc-8, a
homeodomain protein factor [108]. '

The ubiquitin proteosome pathway is implicated in the
turnover of Smads as well as TGFP receptors in the
regulation of the TGFP signaling pathway. Smurfl and
Smurf2, E3-ubiquitin protein ligases, target R-Smads of the
BMP signaling pathway (Smads 1 and 5), Smad7 and TGFp
receptors respectively [109,110]. Smad7 expression is
stimulated by IFN-y and promotes Smurf2-Smad7 complex
formation in the nucleus; this complex is translocated to the
cytoplasm and eventually binds to the TGFP receptors at the
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plasma membrane leading to their degradation [110].. Poly-
ubiquitination of Smad2 and subsequent degradation by the
proteasome has also been reported suggesting that regulation
of the TGFP signaling components occur through the
ubiquitin proteosome pathway [111].

‘Additional detailed accounts of Smad signaling can also
be found in some of these recent reviews [2,3,112,113]. A

_ heuristic model illustrating the different roles of the Smads

in TGF-B signaling is outlined in Fig. (2).
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ABUNDANCE OF BIOLOGICALLY ACTIVE TGFBIN |
CANCER

TGFPigands secreted in their latent forms are
approximately 390 to 414 amino acids long and consists of a
latent associated peptide (LAP) region at the amino-terminal
and the biologically active mature form of TGFp at the
carboxy-terminal ends [114]. Proteolytic processing in the
Golgi apparatus by the convertase family of endoproteases
and conformational changes assisted by LAP are believed to
be necessary to form the biologically active form of TGFp.

Degradation

Degradation

F i
N 4

Growth, Apoptosis,

. 'Cell mobility,
Angiogenesis, Invasion,
Metastasis, Immunosuppression

Fig. (2). A model for the Smad connection to the TGFP signaling pathway.

TGFP binds to a type-I1I recepior, which helps to increase the localized effective concentration of the ligand in the proximity of the type-11 -
receptor (RIT). The TGFP ligand binds to the RII which phosphorylates a type I receptor (RI) that in turn initiates signaling via the Smad
proteins. The activated RI recognizes receptor regulated Smads (R-Smad), such as Smad2 or Smad3 and phosphorylates them at specific
carboxy-terminal serine residues. These phosphorylated R-Smads form a heteromeric complex with the common-mediator Smad (Co-Smad),
Smad 4, and the ‘complex is translocated into the nucleus. In the nucleus, the R-Smad/ Co-Smad hetero-oligomer, either by itself or by
associating with heterologous Smad interacting DNA binding proteins (SIDBPs), such as FAST-1, and/or other cofactors, mediate specific

-transcriptional activation or repression responses. The inhibitory Smads (I-Smads), such as SmadG ‘and Smad?7, are able to compete with R-

Smads by stably binding the RI or by preventing association of R-Smads with Co-Smads, effectively blocking downstream signaling events.
There are numerous other signaling pathwéys such as Ras-MEK that could modulate the end effects by establishing cross talk amoig the
different pathways. The ubiquitin-proteosome pathway continuously recycles the various players in the TGFp signaling pathway, thus
contributing to the inducibility of the system. Please refer to the text for more details.
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LAP remains noncovalently linked to the bioactive TGFB
and the TGFB-LAP complex is apparently bound by latent
TGFP binding proteins (LTBP) to stabilize the protein,
ensure correct folding of TGFP and to enhance secretion of
TGFB to the extracellular matrix of target cells for storage or
bioactivity. It has been reported that LTBP was absent in
malignant but not in benign prostatic tissue suggesting that
tumorigenecity promoted by TGFp could be regulated at the
ligand level [115]). The other molecules, which could play
critical roles in determining the levels of free and mature
forms of TGF-B available to initiate signaling, are
thrombospondin-1 (TSP-1), endoglin (CD105) and
betaglycan (TGFB receptor type I1I (TGFf R III)). TSP-1 is
suggested to play an important role in the activation of TGFp
by inducing conformational changes in LAP, which prevents
reassociation between LAP and mature TGFB [116,117].
Endoglin exhibits strong homology to betaglycan in the
transmembrane and intracellular domains and binds to
TGFB.1t isreported to be overexpressed in breast and lung
cancers with increased angiogenesis and decreased TGFf
responses [118-121]. On the other hand, overexpression of
the TGFB RIIl is associated with enhanced TGFP
responsiveness due to its ability to act as a reservoir for
active TGFB ligands. TGFB RIII has high affinity
binding sites for TGFB ligands and facilitates their
interaction with TGFB RII [122-124]. Under some
conditions increased expression of TGFB RIII has been
associated with reduced tumorigenicity, however, it is
believed to enhance tumorigenicity under other conditions
[121]. The increase in tumorigenicity observed under these
latter conditions may be associated with metastatic
conversion of tumor cells in advanced cancer.

TGFB RECEPTOR DEFECTS IN CANCER

Resistance to TGFP mediated growth inhibition is also
found to be common in a variety of human cancers, which
emphasizes the importance of pathways mediated by this
polypeptide to the neoplastic process [125-127]. The early
investigations to understand the molecular basis of this
resistance were concentrated at the level of TGF$ RI and
RII, the serine/threonine kinase receptors. A correlation

. between resistance to TGFf growth inhibition due to lack of
TGF receptor expression was established and reported in a
variety of human cancer cell lines [128-131]. The. first

genetic evidence for the inactivation of the TGFp signaling .

pathway due to mutations causing structural defects-in the
TGFP RII revolutionized the understanding of the molecular
basis of this defect [129,131,132]. RII mutations were
initially reported in colon cancer with microsatellite
instability (MSI) resulting from frame shifts clustered in a
naturally occurring 10 bp microsatellite-like polyadenine
tract in the 5° coding half of the gene. Subsequent studies
demonstrated that additional sites such as residues in the
kinase domain could also be inactivated in both MSI and
non-MSI colon tumors [131-133]. Microsatellite instability
in this polyadenine repeat, referred to as the BAT-RII region,
leads to frameshift mutations resulting in truncated receptors
that lack kinase domains and are thus functionally inactive
[131]. In addition to colorectal cancers, mutations in the
BAT-RII region are also found in gastric cancers and in
gliomas, but rarely in microsatellite instable tumors of the
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pancreas, liver, endometrium and breast [131,132,134].
Furthermore, most of the non-BAT-RII mutations are
centered in the kinase domain and affect the ability of the RII
receptor to phosphorylate the RI receptor [133]. The analysis
of a mutation, Thr315Met, in the kinase domain of the RII
receptor exhibited the separability of end effects mediated by
TGFP signaling, which may be important in cancer. This
mutation in HNPCC kindred retained the ability to induce
extracellular matrix proteins and PAI-I characteristic of the
metastatic potential while it lost its ability to induce pi5
leading to the lack of TGFf mediated growth inhibition
[135].

There is also evidence that TGFB RI could become
inactivated in a subset of other cancers [127]. It has been
reported that 33% of ovarian cancers have an inactivating
mutation in the RI receptor while no mutations were
observed in the type 1l receptor in the same tumor cohort
[136]. Additionally, deletions of the RI receptor have been
reported to occur at a low frequency in pancreatic and biliary
carcinomas as well as in T cell lymphomas while mutations
of specific amino acid residues were found in breast cancer
[137-139]. A recent analysis of gastric cancer cell lines
suggests that silencing of TGFB RI expression could also
occur due to hypermethylation of a CpG island in the
promoter region adding another mechanism of regulation
that determines the abundance of TGFp receptors [140].
However these alterations alone do not explain the
mechanism of inactiva-tion of the TGF-f signaling pathway
in an overwhelming number of tumors that are resistant to
TGFB signaling effects.

INACTIVATION OF SMADS IN CANCER

The recent discovery of the Smad genes as downstream
effectors of the TGFP signaling pathway and the frequent
occurrence of mutations in these genes could be regarded as
a major breakthrough in the understanding of the molecular
basis of insensitivity and/or deregulation of TGF mediated
effects [21,23,27,28,141,142]. The isolation of the Smad4
gene itself was based on the identification of target tumor
suppressor genes localized to frequent homozygous deletions
affecting 18q21.1 in pancreatic carcinomas 21]. Allelic loss
of 18q21.1 has been associated with cancers of higher
mortality and an increased risk of metastatic spread

4[27,143,'1'44]. In addition to pancreatic cancer, Smad4

mutations weére also found in a subsetf of colon and lung
cancers but rarely in others (Table 3) [23,27,28,141,142].
Two novel Smad genes, in addition to Smad4, have been
isolated and localized to chromosome 18q21 (Table 1) -
[24,25,32]. Soon after the discovery of Smad4, Smad2 was -
also localized to 18921 and considered as a legitimate
alternate candidate tumor ‘suppressor gene localized to this
region. Mutational analysis of Smad2 by others and by us
revealed that it is also inactivated in additional colorectal

- tumors [24,25]. In our study, we extended the analysis of

Smad4 inactivation by using the same set of tumors with
LOH at 18q21 and found that some of the tumors, which
lacked Smad4 mutations harbored Smad2 mutations (Table
4) [21,24,142). These observations further strengthened our
hypothesis that these two genes and other genes involved in
TGF-f signaling may be alternatively targeted for
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Table 3. Mutations in Smad4

Codon Mutation Predicted Change Cancer Reference(s)
43 TTG to TCQ Leuto Ser Pancreas [26]
50-_51 A insertion Frameshift/Stop Colon [150]
St AAA to AAG Lys to Lys (Silent) Ovary [151)
) 65 GGG to GTG Gly to Val Colon [152]
.95 TAT to AAT Tynto Asn " Colon {150]
T 100 _AGG 10 ACG . ArgtoThr Pancreas 28]
102 CCT 0 CTT Proto Leu” AML [153]
115 TGT to CGT Cysto Arg Colon [154] .
129 AAT to AAG Asnto Lys Colon {150]
130 GTC to GAC Pr6 to Ser Colon [142]
162 2bp deletion Frameshift/ Stop Pancreas [26}
168 GGA to TGA " Gly to Stop Colon [154]
i95 TAC to TAA Tyr to Stop Colon, Pancreas [26,154]
202-203 4bp deletion Frameshift/ Stop Lung [141]
269-270 ACT to ACTT Frameshift/ Stop Colon [154]
317 CATto CGT Histo Arg - Ovary {151}
326 1bp deletion Frameshift/Stop Colon " [150]
332 GAT to GGT " Aspto Gly Liver (HCC) [29]1
336-338 2bp deletion Frameshift/ Stop Colon (HNPCC) [154]
339-343 15bp deletion Frameshift Colon [154]
343 TCA to TGA Ser to Stop Pancreas 28]
343 2bp deletion Frameshift/ Stop Pancreas 28]
351 GAT to CAT Asp to His Pancreas, Ovary [28,151]
355 GAC to GAA Asp to Glu C(;lon [150]
358 GGA to TGA Gly to Stop Colon, Pancreas [21,142]
361 CGC to TGC Argto Cys Colon [142]
361 CGCto CAC Arg to His Colon [154]
| . 363 TGT to AGT Cys to Ser Colon [154]
| 369 AAT to GAT Asn'to Asp Pancreas [155]
370 GTC to GAC Val to Asp Colon [142]
i 379 GCA to ACA His to Arg Ovary [151}
‘ 386 GGT to TGT Gly to Cys Ovary A [151]
} 401 TGC to CGC Cysto Arg Liver (HCC) {291
‘ 406 _ GCG to ACG Alato Thr Pancreas . [26]
412 TACto TAG Tyr to Stop Pancreas [21]
415-416 4bp deletion Frameshift/Stop Colon [154}
. 420 CGT to CAT Arg to His Lung [141]
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_(Table 3) contd....

Codon - Mutation . Predicted Change Cancer Reference(s)
441 CGT to CCT Arg to Pro Lung [141}
442 CAG to TAG Gln to Stop Colon 154}
445 CGA to:TGA Arg to Stop Colon v [150,1541

447-455 25bp deletion Frameshift/Stop Colon [154]

450-459 28bp deletion Frameshift/Stop Colon [154]
457 GCA1o TCA Alato Ser Pancreas [155]
483 AGT to AAT Aberrant splicing Pancreas’ 21}
483 4bp insertion Frameshift/Stop AML - [153] )
492 1bp insertion Framesﬁiﬂ/Stop Seminoma geﬁn cell [30]
493 GAT to CAT Asp to His Pancreas [21]
497 CGCto CAC Argto His Colon [154]
504 ‘ AGT to AGA Serto Arg Ovary [1513
507 AAA to CAA Lys to Gln. Colon [154]
515 AGA to GGA Argto Gly Colon [154}
515 AGA to TGA Argto Stop Pancreas [21,155]
516 CAG to TAG Gl to Stop Cotitis [156]

516-518 8bp deletion Frameshift/ Stop Pancreas 21}

- 525 ATTto GTT lle to Val Head and Neck {157)
526 GAA to TAA Glu to Stop Head and Neck [157}

528/529 4bp deletion - Frameshift/ Stop Pancreas [155]
538 GAA to TAA Glu to stop Colon [150] '

540-542 7bp deletion FrameshifV/ Stop Colon [154]

Table 4. Mutations in Smad2

Codon | - Mutation 'Px.-edicted change Cancer Reference(s)
133 CGC to TGC - ArgtoCys Colon - [25)

345-358 42bp in deletion In frame deletion Colop' [24]
346 TTT to GTT Phe to Val Colon [154]
407 CAG to CGG . Glinto Arg Liver (HCC) . 29

- 431-454 9bp in deletion In frame deletion Lung 27
me CAT'to CGT His to Arg ‘Colon [158]
440 CTT to CGT Len to Arg Colon {25}
445 . CCT to CAT Pro to His Colon [25])
450 GAC té GAG Asp to Glu Colon [25}
450 GAC to CAC Asp to His Lung {27
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inactivation in cancer. Although homozygous deletion of
18q21.1 is also a major mechanism of Smad2 and/or Smad4
inactivation, specific mutations of these genes results in
defects in their functionality. Many of these mutations are
found in the MH2 domain and can dysregulate Smad
signaling by; (1) preventing phosphorylation, (2) weakening
interactions during homo and hetero-oligomerization, and (3)
altering interaction with other factors affecting transcription
of Smad regulated genes [11, 49, 145, 146].

The mutations that map to the interface regions between
the Smad4 monomers destabilize the trimeric complex.
Mutations in the third loop on the face of the disk disrupt the
formation of heteromeric complexes whereas mutations in
the hydrophobic core destabilize the structure of the protein
[48]. In a study assessing the role of the Smad2 P445H
mutation, it was shown that upon over-expression of Smad2
P445H, the mutant protein could become phosphorylated by
the RI receptor and associate with Smad3 or Smad4, but was
unable to disassociate from the receptor. Moreover, when the
mutant protein was phosphorylated upon ligand binding,
Smad2P445H bound stably with wild type Smad2 and
blocked the nuclear accumulation of Smad2 and subsequent
Smad2 dependent transcription [147]. It was also shown that
a missense mutation in a conserved amino acid in the MH1
domain of both Smad2 and Smad4 resulted in an enhanced
autoinhibitory interaction between the MH1 and MH2
domains, which decreased protein stability {34]. Mutations in
the MH1 domain of Smad4 were found to eliminate its
ability to bind DNA even though they still retained the
ability to form complexes with Smad3. Additionally, these
mutant proteins exhibit decreased protein stability and an
impaired ability to translocate to the nucleus [148]. Finally, a
novel mechanism of inhibition of TGFf signaling has been
observed in mutations of a conserved residue of the MHI
domain of Smad2 and Smad4 which targets the mutant
protein for rapid degradation via the ubiquitin-proteosome

pathway [149].

The third Smad family member localized to 18q21, Smad

" 7, is an important regulator of Smad signaling pathways’

primarily by antagonizing TGFf signaling via inhibition of
R-Smads. Increased expression of Smad7 was shown in
some pancreatic cancers, but there has been no evidence

- presented thus far for the existence of activating mutations or

amplifications of the Smad 7 gene [26,159]. The clustering
of the Smad 2, 4 and 7 genes in a critical region of
chromosome 18q21 which is deleted at high frequency in
advanced tumors raises an .intriguing possibility that there

may be additional Smad genes localized to this region in’

addition to potentially unrelated tumor suppressor genes
[11,24,142]. Similarly, Smad3 and Smad6 are located in the
same general region on chromosome 15q21-22, which is
frequently lost in a subset of breast, colorectal, lung and
pancreatic tumors [160-162]. However, neither inactivating
mutations, homozygous deletions, nor amplifications of
Smad3 or Smad6 have been reported to date in human
cancers [26,136,154,163-166).

Interestingly, the association of chromosome 18q loss
[deletion of Smad gene(s)] with an advanced stage of human
cancer and the observation of an increased malignant
conversion frequency and decreased carcinoma latency in
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mice with disabled TGFBsignaling due to over-expression
of the dominant negative TGFP RII, illustrates that the
inactivation of TGF signaling is a critical late event in the
multi-step cancer progression [142,167-171]. Consistent with
these studies are the recent findings that TGFP signaling may
have a role in metastasis as discussed in a subsequent section
of this review.

GROWTH INHIBITION AND APOPTOSIS

TGFpcan inhibit.cellular proliferation in a number of
cell types. This inhibition occurs at the G, stage of the cell

- cycle and ‘is accomplished through either one of the two

following mechanisms: induction of cdk inhibitors such as
pls, p21 andeZ7 or downregulation of Myc. pl15™&®,
p16™*2 H18™NK% and p19™K4 are all members of the INK4
family of cyclin dependent kinase inhibitors that bind cdk4
and cdk6, to suppress their catalytic activity by preventing
association with cyclin D [172]. TGFp signaling mediated
pl5 induction and activation was originally shown in
keratinocytes and was later implicated in stabilizing p15,
enhancing the formation of p15-cdk4 complexes and
inhibiting cyclinD-cdk4 complexes in mammary epithelial
cells [173,174]. It has been recently reported that Smad2,
Smad3, Smad4 and Spl are directly involved in pl5
induction confirming previous reports that had implicated
Spl and Smad3 in pl5 induction [91,175,176]. Early in G,
cyclinD and cdk4/6 come together to form complexes that

.sense mitogens. pl5 binds to cdk4/6 and inactivates its

catalytic activity, which prevents cyclinD from forming
complexes with cdk4/6. By sequestering cdk4/6, the cells are
prevented from progressing through G,. Cyclin E-cdk2 and
cyclin A-cdk2 complexes, respectively, regulate late G1 and
early S phase. TGFf can also block the cell cycle progre-
ssion mediated by cyclin E-cdk2 and cyclin A-cdk2 com-
plexes indirectly via p15 by disrupting these complexes. The
Cip/KiP family of cdk inhibitors, which include p21PWAF!,
p27°?" and p57%"*2, bind to these cyclin-cdk complexes
causing their functional inactivation. CyclinD-cdk4/6 binds
to p27 later in Gy sequestering p27 and allowing cyclin E-
cdk2 to become activated. TGF-B mediated induction of p15
allows its binding to the cyclin D-cdk4/6 complexes which
frees p27, so that it can bind to cyclin E-cdk2 and prevent
progression into S phase [174, 177, 178]. ’

p21 is also known to bind to G, cdks, and recent reports
suggest that p21 could also play an important effector role in
TGFP growth suppression. While Smad3, Smad4 and Spl
cooperate to activate the p21 promoter in HepG2 cells in
response to TGFp, the DNA binding domain mutants of
Smad3 and Smad4 as well as overexpression of Smad7
inhibited the induction of p21 by TGFf [92]. Despite

~ general acceptance that p21 induces cell cycle arrest, clues to

the molecular basis of its function have only recently started
to emerge. HPV16 immortalized human ectocervical cells
treated with TGFPB were shown to have increased p53 levels
that correlated with time and dose. In these cells, p21, bax
and Mdm?2 levels exhibited a concurrent increase with
similar kinetics, while no distinguishable changes in the
protein levels of cyclin D, cyclin E, cdk4, cdké, cdk2, p27,
pl6 or RNA levels of pl5 were observed. However, the

" catalytic activity of cdk2 was decreased, possibly by binding
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to p21, which was shown to coimmunoprecipitate with cdk2
upon TGFf stimulation [179]. In gastric carcinoma cells, it
has been reported that p21 inhibited the kinase activity of
cyclin D and cyclin E associated cdks resulting in
hypophosphorylation of p130, a member of the RB family of
proteins that regulate E2F [180]. Additionally, adenoviral
ElA, a potent stimulator of cellular proliferation has also
‘been shown to block TGF induced induction of p15 and
p21. The decrease in p15 appears to be at the level of
transcriptional regulation and is dependent upon E1A’s
ability to bind p300 but independent of E1A’s pRb binding
activity [181]. Despite all these experimental data suggesting
that TGFP growth inhition is mediated via cdk inhibitors, it
is also important to note that the growth inhibitory effects of
TGEFB are not solely mediated by cdk inhibitors as p15-/- and
p27-/- mouse embryo fibroblasts are also sensitive to TGFp
mediated growth inhibition [182, 183].

Dowrregulation of cdk activators is another mechanism
by which TGFf can exert its growth suppressive effects. The
cdc25A phosphatase removes tyrosine phosphorylation of
cdk4 and cdk6, which in turn, activates these kinases. TGF3
downregulates cdc25A, which prevents the removal of these
inhibitory phosphate groups from and inhibits the catalytic
activity of cdk4 and cdk6 [184]. The cdc25A downregulation
involves a transcriptional repressor complex containing E2F,
p130, and HDAC], which bind to the promoter of cdc25A
[1]. However, two studies have demonstrated that this
downregulation of cdc25 is subsequent to p21 induction,
which occurs very rapidly (< 1 hr) while the induction of p15
occurs at a later time point [184, 185].

Growth suppression by TGFP may also be activated
upstream of cdk inhibitors by downregulating c-Myc. c-Myc
is a ubiquitous promoter of cell growth and can act as both a
transcriptional activator or repressor dependent upon the
cofactors with which it associates [186]. The downregulation
of c-Myc occurs very rapidly in many cells that are sensitive
to TGFpB growth inhibition [187]. The downregulation of c-
Myc in response to TGFP has been proposed to be an
essential early event prior to the induction of p15 and p21, as
overexpression of ¢-Myc blocks p15 and p21 induction and
ablates the cell cycle arrest [188,189]. A positive association
.between c-Myc and cdc25A has been demonstrated and
opens the possibility of another level of regulation of cdc25A
by TGFP [190]. A genome wide analysis_of rapid TGFP

gene responses comparing human mammary epithelial cells .

with breast cancer cells demonstrated that c-Myc repression
was selectively lost in the breast cancer cells. TGFf induces
a Smad complex that binds to a TGFf inhibitory element in
the c-Myc promoter. In the breast cancer cell line, these
complexes were defective and the authors suggest that this
Smad complex is a target of oncogenic signals in breast
cancer [191]. Dual roles for the Myc-interacting zinc-finger
protein 1 (Mizl) in response to TGFP signaling have
recently been discovered, providing clues to the molecular
basis of some of these end effects. Miz-1 relieves repression
of plSmK‘“’ expression by interacting with Myc, preventing
its recruitment to its promoter, and by enabling Smad protein
complex mediated transactivation. [192].

While TGF has also been shown to induce apoptosis in
a number of cell types (hepatocytes, myeloid cells and
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epithelial cells), organs and tissues, the mechanisms by
which apoptosis is induced by TGF-f are poorly understood.
TGFp induced apoptosis is essential for normal development
of the neural crest, interdigital fields of the limb and the
mammary gland ductal system [193-195]. There is also
mounting indirect evidence implicating TGFf mediated
apoptosis in the elimination of preneoplastic cells and that
the abrogation of this pathway results in an increased rate of
carcinogenesis and/or metastasis. The mechanisms
regulating TGFP mediated apoptosis are just coming to light.
There has been an increasing body of literature implicating
Smad7 in the pathway. Smad7 expression is increased in rat
prostatic epithelial cells undergoing apoptosis due to
castration, and TGFpP induced apoptosis was ablated by
inhibiting Smad7 levels in a number of cell lines [196].
Smad7 expression increased apoptosis in Mv1Lu cells in
response to TGFP and serum withdrawal. Furthermore,
Smad7 decreased the activity of NF-xB, a potent survival
factor, and sensitized cells to various forms of cell death
[197]. Smad3 and AP-1 may also play a role in this pathway
as overexpression of Smad7 or dominant negative Smad3
was shown to block TGFB induced apoptosis [198].
Furthermore, the JunD-FosB-AP1 complex is also activated
in TGFP dependent apoptosis. Dominant negative FosB
inhibited apoptosis but not growth suppression in these cells
[198]. These observations would predict that directly or
indirectly disabling Smad3, Smad7 or other signaling
molecules of the TGFP signaling pathway involved in
apoptosis could facilitate tumor formation. Although
gastrointestinal tumors have been observed in Smad3
knockout mice, so far there has been no evidence for
mutational inactivation in human tumors suggesting that
there might be indirect mechanisms for inactivation of this
molecule in cancer. :

Bcl and caspase family members have -also been
implicated in mediating the apoptotic pathway induced by
TGFB[7,199). The NRP-154 rat prostate epithelial cell line
can be induced to undergo apoptosis in response to TGFB. In
this model, TGFP downregulates bcl-xL and PARP
expression, promotes cytochrome c release and upregulates
expression of caspases 3 and 9. Overexpression of bcl-xL
prevented apoptosis by blocking cytochrome ¢ release,
activation of caspases 3 and 9 and cleavage of PARP.
Interestingly, these cells were still sensitive to TGFf cell
cycle-arrest suggesting that there may be independent
signaling events mediating -these two processes [200]. A
recent report suggests-that bel-xL downregulation is a result
of reactive oxygen species (ROS) production by TGFf
mediated effects. Decreased levels of bcl-xL cause a
decrease in mitochondrial transmembrane potential, which ~
may lead to the release of cytochrome c and the activation of ~
caspase 3, resulting in apoptotic cell death [201]. Overall,
these observations strongly imply that cell specific growth
inhibitory or apoptotic responses mediated by TGFP via the
Smads may become disabled in tumor cells enabling the
uninhibited growth of tumors. :

SMADS CROSSTALK WITH OTHER SIGNALING
PATHWAYS '

It is becoming increasingly clear that the TGFP signaling
pathways are part of a signaling network that can lead to




TGFP and its Smad Connection to Cancer

numerous biological end effects. Signaling cascades
involving Ras, JNKs, p38, and JAKs have been shown to
interact with TGFf signaling at various levels leading to
both synergistic and suppressive end results dependent upon
the cellular context. MAP kinase pathways lead to the
activation of either the ERK1/2, INK or p38 kinase. The
MAP kinase pathway is frequently dysregulated in cancer,
most often due to oncogenic mutations in Ras, which has
been shown to be an early event in a number of cancers
[202-204]. Ras signaling has also been shown to be both
antagonistic as well as cooperative with TGF signaling. Ras
antagonism can occur at various levels. Ras stimulates the
activation of cyclin dependent kinases (CDKs) which are
important in cellular progression through the cell cycle and
hence proliferation. TGFf signaling induces the -production
of CDK inhibitors that can cancel the effects of CDK
activation by Ras [177,205]. It has also been proposed that
activation of the MAP kinase cascade by Ras can inactivate
Smad signaling by sequestering Smad2 and Smad3 in the
cytoplasm to such an extent that even overexpression of
Smad4 is not able to restore TGFP signaling [206].
Additionally, oncogenic Ras signaling has been shown to
increase the stability of the Smad co-repressor TGIF due to
phosphorylation resulting in the suppression of expression of
CDK inhibitors such as p15 [207]. Ras can also cooperate
with TGFP signaling, and there is a growing body of
evidence suggesting that Ras may “reroute” TGFp signaling
in epithelial cells. Oncogenic Ras in mammary epithelial
cells allows these cells to transdifferentiate into a highly
invasive and metastatic phenotype while inhibiting Smad
dependent growth inhibition [208]. Additionally, breast
cancer cells with a constitutively activated Ras have an

increased ability to metastasize to the bone in response to
TGFp [209].

Hepatocyte growth factor (HGF) and epidermal growth
factor (EGF) have also been reported to activate Smad
dependent gene transcription via an ERK dependent pathway
in epithelial cells [210]. However, when phosphorylation of
the linker region of Smad2 was catalyzed by MEKK]I, it
prevented the nuclear localization of Smad2 and thus Smad
dependent transactivation [211]. Since phosphorylation of
Smad2 usually occurs in the C-terminus of the protein in
response to TGFp, it has been postulated that the sites where
R-Smads are phosphorylated would ultimately determine

whether growth inhibition or growth stimulation would occur -

during the signaling cascades. :

TGFB can itself activate numerous MAP kinase
_pathways, including the MKK4-JNK and MMK3-p38
pathways that can lead to both Smad-dependent and Smad-
independent transcription [85,212-215]. The activation of
these cascades by TGF may involve Rho-like guanosine
triphosphatases [211]. TGFP activated kinase 1 (TAK1) may
also be involved in TGFp signaling through p38 [216-218].
While TGFp activates the hematopoetic progenitor kinase
(HPK) and an association between HPK and TAKI1 has been
shown, a direct link between TAK and TGFf RI is still
unresolved [218]. TGFf activation of JNK or p38 can
mediate transcription by activating AP-1 complexes via
phosphorylation of c-Jun or CRE-regulatory complexes
through ATF2 phosphorylation [85,213]. The specificity of
these end effects may be mediated by the specific
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interactions between Smads and ATF2 or Jun complexes that
have recently been reported [85,87,216,219]. Interestingly,

JNK has also been shown to phosphorylate Smads at v

undetermined sites within the linker region [220].

Finally, there is also emerging evidence to support
crosstalk between TGFf signaling and the JAK/STAT
andNF-xB signaling pathways. Interferon-yactivates JAK
tyrosine kinases which in turn activate STAT proteins. It has
now been reported that Interferon-y inhibits TGFB signaling
by direct STAT-mediated transactivation of Smad7 [221].
Smad7 activation and inhibition of TGFsignaling has also
been shown to be mediated by NF-xB/RelA [222]. While all
the. details regarding the exact interactions that -occur
between TGFf signaling molecules and members of other
signaling cascades remained unresolved, it is becoming
increasingly clear that TGFp signaling is very complex with
cell type and cellular micro- and macro-environment
dictating which biological end resuits will occur.

TGFB SIGNALING IN ANGIOGENESIS AND
METASTASIS

During early stages of tumor development, TGFf
functions to suppress cell-cycle progression and inhibit
tumor growth [173,177,223]. However, in later stages,
human tumor cells generally develop resistance to TGFf3-
mediated growth inhibition [224]. In advanced cancers,

~ TGF ceases to function in tumor suppression and adopts the

converse role of enhancing metastatic spread. Dissemination
of malignant cells from a primary tumor to distal sites in the
body is the principal cause of death in cancer patients.
Metastasis can occur through a variety of mechanisms,
including direct invasion of surrounding tissue (per
continuitatem), dissemination via the blood vasculature
(hematogenous metastasis), and/or through the lymphatic
system (lymphatic metastasis) [225]. Overexpression of
TGF is detected in several advanced and metastatic human
tumor types, including prostate, mammary, and renal cell
cancers [226-229]. Elevated levels of TGFB are usually
detected in the microenvironment surrounding the tumor and
in the tumor stroma [230]. The excess TGFP may enhance
tumor progression by promoting local tissue invasion and by
inducing tumor angiogenesis. TGFf appears to play a role in
both per continuitatem and hematogenous metastatic spread.

Metastasis via local tissue invasion is apparently
promoted by TGFB signal transduction by altering the
properties of the cell [208,223,231]. TGFp stimulates the
conversion of fully polarized, non-invasive epithelial cells to
an invasive mesenchymal, spindle cell-phenotype [231]. The
epithelial to mesenchymal transition (EMT) involves
decreased expression of genes important in cell-cell adhesion
and increased expression of genes involved in cell-
extracellular matrix connections [232]. The resulting cells

- display enhanced migration and invasion into surrounding

tissues and demonstrate autocrine production of TGFf,
which is essential to sustain the invasive property of the
tumor cell [231]. On the contrary, interference with TGFp
receptor signaling converts invasive, metastati_c,
mesenchymal cells to non-invasive cells with an epithelial
phenotype [231]. Therefore, the TGFp receptors may be
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promising targets for late-stage cancer therapeutics to revert
invasive cells to a more benign phenotype.

Tumor angiogenesis, that is, the onset of neovasculari-
zation within a primary tumor, is essential for both tumor
expansion and metastasis. The newfound access of the tumor
16 the host bloodstream not only affords necessary oxygen
and nutrients to tumor cells, but also provides a route
through which these cells may disseminate to distal sites
[233]. The role of TGFP in blood vessel formation remains a
highly complex process. TGFP exerts a biphasic effect on
angiogenesis induced by vascular endothelial growth factor
(VEGF). In vitro, high concentrations of TGFf inhibit
endothelial invasion and capillary lumen formation, whereas
lower concentrations of TGFP synergistically function to
increase endothelial cell invasion mediated by VEGF or
basic fibroblast growth factor (bFGF) [234, 235]. However,
in vivo, TGFP has been shown to function in stimulating
angiogenesis [236]. TGFB-1 knockout mice were found to

" suffer from defective vasculogenesis and embryonic
lethality, supporting an essential role for TGF signaling in
blood vessel formation [237]. :

The activin receptor-like kinases (ALKs) are TGFf RI
receptors, which seem to play a role in blood vessel forma-
tion and remodeling. ALK1 and ALKS induce different
TGFB signaling pathways that determine the phenotype of
the endothelium during angiogenesis; endothelial cells
alternate between an activation phase and a resolution phase
during blood vessel formation [238]. TGFf signaling
through ALKS seems to promote passage into the activation
phase, which is characterized by migration and proliferation
of endothelial cells to génerate vessel formation. However,
signaling through ALK1 appears to induce the resolution
phase in which endothelial cells cease migration and
proliferation and the basement membrane becomes reconsti-
tuted [239]. It has been speculated that ALKS has a higher
sensitivity to TGFf than ALK1; low concentrations of TGFf§
would therefore only activate ALKS and not ALKI1, thus
favoring endothelial cell proliferation. Higher concentrations
of TGFB would bind and activate ALK1, which inhibits the
ALKS5 pathway and thus concludes the process of
angiogenesis [239]. As demonstrated in the aforementioned
in vitro studies, varying concentrations of TGFf apparently
affect angiogenic activity via the mediation of VEGF and
bFGF; it can be hypothesized that TGFf signaling through
ALK and ALKS regulates angiogenesis in a similar manner.
However, further studies are required to elucidate the exact
nature of the signaling events mediated by ALK1 and ALKS.

The recruitment of excess TGFB to areas of angiogenic
activity may be regulated by CD105 (endoglin). This
glycoprotein is similar to the RIII receptor for TGFp, and is
expressed predominantly in proliferating endothelial cells.
Expression levels of CD105 are particularly elevated in
endothelial cells of tumor blood vessels, but are virtually
undetectable in blood vessels of normal tissue [240-242].
Overexpression of CD105 has been linked to blood vessel
formation, whereas CD105 null mice are severely defective
~ in angiogenesis and die in utero [243]. Thus, expression of

CD105 may mediate the cellular proliferation effects of

TGI:‘B in the blood vessel endothelium, promoting
angiogenesis and subsequently metastasis.
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Due to the limited availability of data, the overall role of
TGF@ signaling in stimulating angiogenesis appears highly
complex and is largely unresolved. However, a recent report
demonstrates that Smad4 inhibits expression of VEGF, a
potent inducer of angiogenesis, and increases expression of
thrombospondin-1 (TSP-1), an inhibitor of angiogenesis
[244]. Hence, inactivation of Smad4, as observed at high
frequency in colorectal and pancreatic cancers, would
implicate promotion of tumor angiogenesis and metastasis.
This notion has been further supported by recent
experimental data from the analysis of human colorectal
cancer where a strong correlation between higher frequency
of Smad4 gene mutations and distant metastases relative to
non-metastatic forms of colon cancer was observed [154].
This data is also consistent with .a role for Smad4
inactivation in the stimulation of angiogenesis, which could
in turn permit hematogenous metastasis. However, it seems
highly likely that the function of TGFP in tumor blood vessel
formation is reliant upon both the tumor type and the
particular mutation in the TGFp signaling pathway. -

TGFB is also known to induce the expression of various
components of the extracellular matrix (ECM), including
collagen, fibronectin, tenascin, vitronectin, proteoglycans
and integrins. In some cell types, this growth factor also
functions to inhibit degradation of the matrix by repressing
expression of proteases, including plasminogen activators,
collagenase and stromelysin and through activating protease
inhibitors, such as TIMP1 and PAI-1 [245-248]. Degradation
and remodeling of the ECM are key events in both
angiogenesis and metastasis. In order to disseminate, tumor
cells must detach from neighboring cells and escape from the
tissue of origin via either hematogenous or fymphatic routes
and hence the breakdown of the ECM would hasten the
flight of the tumor cells to distal sites [249]. Thus, blood
vessel and possibly lymphatic vessel formation is facilitated
by degradation of the ECM. The breakdown of connective
tissue barriers creates a path through which endothelial cells
are able to migrate, adhere and proliferate, generating new
vessels which may grow toward and infiltrate the tumor
mass.

Despite a plethora of evidence presented in the literature
for promotion of ECM formation by TGFp, contradictory
roles for TGFP in the maintenance of the ECM have also
been observed in the tumorigenic process. In malignant cells

. that have acquired TGFp-resistance, one_may expect that

pathways that induce expression of ECM molecules would
not.be intact. However, TGFp retains its ability to induce
ECM as well as to positively stimulate breakdown of the
ECM through induction of type IV collagenases. These
matrix metalloproteases are involved in the degradation of
basement membrane and promote metastatic characteristics,
which are often observed in studies using tumor cell lines as
the experimental system [250-253]. The role of TGFP in
ECM maintenance is primarily mediated through RI receptor
signaling [254]. However, it has been postulated that TGFf

" regulates certain ECM molecules independently, possibly

through different receptor subtypes or alternative signaling
molecules [248]. In contrast to the degradation of ECM
promoted by TGFf during tumor metastasis, other
observations show an inhibition of ECM degradation by

" TGFB-mediated stimulation of the synthesis of PAI-1 in both
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primary and metastatic tumors [248]. Therefore, the role of
TGFB in promoting ECM degradation, and thus allowing
metastasis, is not globally- applicable to all cancers and may
be dependent on the specific mutated targets in the TGFp
signaling pathways.

Recent studies have provided additional evidence to
confirm that TGFB-mediated growth suppression and
apoptosis may operate independently of the angiogenic and
metastatic processes. Activated Ha-Ras collaborates with
TGFP to induce the phenotypic invasiveness of mammary
epithelial tumor cells, whereas Raf:induced TGFp
productlon blocks its apoptotic but not its invasive responses
in epithelial cells [231, 255]. Additionally, work using breast
cancer cell lines has shown a requirement for Smad2 and
Smad4 in inducing trans-differentiation in cells with low
levels of RI receptors [256]. Furthermore, a recent study
reports that blocking TGF-§ signaling with truncated RII
receptors has no effect on the local growth of the tumor, but
significantly decreases metastasis to the bone [209].

A]though there is increasing evidence for TGFB
involvement in metastasis through both local tissue invasion
and hematogenous spread, it remains to be determined
whether TGFf plays a role in lymphatic metastasis. Tumor
cell dissemination via the lymphatic system has received
secondary consideration relative to tumor metastasis via
local tissue invasion or via the blood vascular system. With
the recent cloning of the lymphatic vessel specific growth
factors, VEGF-C and VEGF-D, focus has shifted toward the
lymphatic system as an important medium for metastasis
[257-259]. These observations prompt one to ask whether a
relationship exists between TGF signaling and lymphatic
metastasis, or more specifically, between TGFp and VEGF-
C and/or VEGF-D. A refined understanding of the molecular
mechanisms underlying metastasis will elucidate the
contribution of TGFp signaling to tumor cell dissemination.

TGFB AND IMMUNE SUPPRESSION

The critical roles of TGF in regulating the immune
system have recently received increasing attention. TGFp is
a multi-functional cytokine with a number of roles in the
immune system [4, 260]. Many immune cells, including
lymphocytes, macrophages and dendritic cells, produce
TGFB; this expression is regulated by both autocrine and
paracrine pathways, and TGFB mediates the differentiation,
selection, apoptosis, activation and proliferation of these
immune cells [4, 261]. The characterization of the Smad
family of proteins has helped to elucidate the molecular
mechanisms underlying the effects of TGFp in the immune
system, including cross talk with other cytokine and
lymphokine pathways [221, 262].

T lymphocytes are regulated by TGFP at all stages of
development, from differentiation to activation and
proliferation [263,264]. Some subsets of activated T cells
(Th3 cells) are able to synthesize and secrete TGF, which
typically inhibits production of interkeukin-2 (IL-2), thus
suppressing T cell proliferation. Consistent with these
observations, TGFB1 null mice exhibit an increased
expression of IL-2, class II MHC antigen and primary
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expansion of CD4” T cells [265, 266]. Such mice also
develop a multifocal inflammatory disease with autoimmune
manifestations, including production of autoantibodies [267].

During T cell education, TGF may regulate maturation of
double positive T cells from CD4 CD8"" precursors; in the
absence of TGFf1, double positive thymocytes are generated
too rapidly to allow appropriate selection processes to
transpire. Dysregulated production of CD4"CD8" T cells in
these mice may be -exacerbated by defects in apoptosis of T
cell subsets, thus causing autoimmune disease [263].

Cytotoxic T cells (CTLs), or class I MHC- restricted T

cells; can_provide an effective anti-tumor defense in cell-

mediated immune responses. These effector cells are
responsible: for direct killing of virus-infected or allogeneic
cells [268]. CTLs exert their effect by lysing cells through
one of two mechanisms: the perforin/granzyme B pathway or
the Fas/Fas ligand pathway. TGF1 plays a role in
determining cytotoxicity by regulating the repertoire of gene
expression in the CTLs. Several studies have demonstrated
in vitro that TGFB1 inhibits perforin mRNA expression and
thus suppresses the perforin/granzyme B cytotoxic pathway;
however, TGFB1 has no effect on the Fas/FasL cytotoxic
pathways [269, 270]. TGFBl may also decrease
immunosurveillance by CTLs in a more indirect manner
through suppressing expression of helper T cells. CD4+
helper T cells (Th cells), or class Il MHC restricted T cells,
are not generally cytotoxic to tumors; however, these cells
may play a role in the anti-tumor response by providing

- cytokines for the effective development of CTLs [268].

Recent studies have shown that TGFB1 suppresses memory
Thl T cell maturation by down-regulating expression of the
B2 chain of the IL-12 receptor; IL-12 is required for a Thi
cell to develop from a naive CD4+ T cell. TGFB1 also
inhibits the development of Th2 cells. During cancer
progression, TGFP1 suppression of the expression of
perforin and prevention of the maturation of Thl and Th2
cells may thus inhibit anti-tumor immune responses.

It remains difficult to develop a comprehensive view of
the effect of TGFf on T lymphocytes as TGF works not.
only directly but also indirectly on T cells by affecting
antigen-presenting cells (APCs). Dendritic cells (DCs) are
typical APCs in both lymphoid and non-lymphoid organs;
they function to present peptide antigens to helper T cells
and to initiate antigen-specific T cell proliferation. Several
studies have reported that TGFf inhibits in vitro activation
and maturation of lymphoid tissue type DCs [271].
TGFP may inhibit regulation of T cell costimulatory
molecules on the surface of these DCs and thus reduce their
antigen presenting capacity. The immunosuppressive role of
TGFB in cellular immunology is therefore due to its

inhibitory effect on both effector T cells and APCs.

TGFf may also mediate several aspects of the maturation
and differentiation functions of B cells. In vitro, TGFf can
inhibit B cell proliferation, antibody secretion and expression
of surface molecules, including antigen receptors. In
humans, TGFBis also involved in directing switch
recombination in immunoglobulin isotype IgA; in TGFp null
mice, high levels of autoantibodies, predommantly IgG, are
detected [272, 273]. Several human and murine B lymphoid
malignancies have been identified in which B cells become
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resistant to the growth inhibitory effects of TGFf; these
malignant B cells express substantial amounts of active
TGFB. These insensitivities may be derived from defects in
any of the players of the TGFP signaling pathway, including
the Smads. Further studies are necessary to determine the
molecular basis of these defects.

Studies of pathogens suggest that increased production of

- TGFB may lead to decreased immune surveillance. The

immune response to a variety of pathogens, including
viruses, bacteria, yeast and protozoa, is regulated by TGFf.
Trypanosoma cruzi, a protozoan parasite, infects
macrophages and suppresses their antibacterial activity;
these macrophages are stimulated by the parasite to produce
increased levels of TGFf [274]. Studies, which have focused
on mycobacteria and viruses, including the human
immunodeficiency virus (HIV), have reported that TGFf has
both a negative influence on host immune response and a
beneficial effect on the survival and growth of intracellular
pathogens [275].

TGFp may allow tumor progression through its ability to
suppress immune surveillance. An increase in the expression
of TGFBis common in carcinomas resistant to TGFp-
mediated growth inhibition and is also apparently important
for tumor progression; this association may also play a role
in suppression of immune surveillance [276-278]. Expre-
ssion of TGFP allows disseminating tumor-cells to permeate
the body without being attacked by mediators of the immune
response such as cytotoxic T cells and macrophages. In some
primary tumor cells, increased expression of TGFB and
interleukin 10 (IL-10), another potent immunosuppressive
factor, has been detected; expression of such genes may
explain how tumors suppress CTL function and escape from
the immune response [279, 280]. The analysis of genes
expressed by tumor cells using high throughput methods
may provide the critical data required to discover which
other cytokines or factors are involved in the effective
immune suppression achieved by tumors [281-283].

GENE KNOCKOUT STUDIES

TGFp expression begins early in development, and gene

‘targeting approaches have been used to elucidate the in vivo

‘Table5. Smad Knockout Mice
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functions of both TGFp isoforms and Smads. TGFf1 (-/-)
mice develop a progressive wasting syndrome resulting in
death within a few days [254, 255]. Detailed analysis showed
infiltration of lymphocytes and macrophages and necrosis in
many of the organs, especially the heart and lungs [254-257].
Many of the lesions found in these mice resembled those
found in autoimmune disorders, suggesting a role for TGFf1
in immune cell proliferation as we have already described in
detail in the previous section of this review [235, 258]. An
embryonic phenotype has also been observed in the TGFf1
(-/-) mice as only 50% of the conceptuses reach parturition
[207, 254, 255]. These mice die by E10.5 due to defective
yolk vasculogenesis as well as defective hematopoesis {207].
However, the TGFf 1(-/-) mice, when derived from a 129
background, develop nonmetastatic colon cancer if they are
rescued from autoimmune disease [259, 260]. Additionally, -
TGFP1 may also play a role in susceptibility to
carcinogenesis. TGFB1 (+/-) mice have an enhanced
propensity to develop lung and liver cancer when treated
with carcinogens.

TGFB2 (-/-) mice die from congenital cyanosis shortly
before or during birth. They have profound craniofacial, eye,
spinal column, cardiac, lung, limb and urogenital defects
[261]. TGFB3 (-/-) mice die within 24 hrs of birth. They have
cleft palates and abnormal pulmonary histology, but most of
the remaining organs are normal [262, 263].

TGFf receptor RII knockouts result in embryonic
lethality. Null mice die at E10.5 due to defects in yolk sac
hematopoesis and vasculogenesis [264]. These mice
resemble the TGFP1 (-/-) mice suggesting that the TGFp-
receptor RII may play a role in hematopoesis and endothelial
differentiation.

Smad knockout studies have revealed that all of the Smad
knockouts exhibit developmental defects (Table 5). While
the Smad 2, 4 and 5 knockouts are embryonic lethal, the
Smad 3 and 6 knockout mice survive to term. Smad 2 (-/-)
mice die before E8.5 [265-268]. These Smad2 null embryos
do not form a head fold or primitive streak, lack the
extraembryonic portion of the egg cylinder, have no
mesoderm formation and do not undergo gastrulation. Smad
3 null mice are born viable and fertile [269, 270]. However, -
these mice die between one and eight months of age due to

Gene -/- Phenotype o References

Smad2 Embryonic lethality by E7.5-E8.5, Defects in egg cylinder elongation, mesoderm formation, and gastrulation. [295-298]
Anterior-posterior axis formation abnormalities. .

Smad3 Death within 1-10 months. Metastatic colorectal cancer at 4-6 months of age. Immune dysregulation, severe [299-301]
mucosal infection, accelerated wound healing, osteoporosis and skeletal defects.

Smad4 Embryonic lethality by E7.5-E8.5. Growth retardation. Abnormal visceral endoderm formation, absence of
mesoderm and lack of gastrulation. Primary defects in extraembryonic tissue development and abnormalities in
anterior-posterior axis formation.

[302, 303, 304]

Smad5 Embryonic lethality by E9.5-E10.5. Defects in angiogenesis, mesenchymal apoptosis and in gut, heart and [306-308]
craniofacial development.

Smadé6 Cardiovascular abnormalities and defects in endocardial cushion transformation. [309]
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chronic infection, suggesting that Smad 3 is a player in
immune responses [269, 271]. Fibroblasts from the Smad 3
null mice have been shown to be partially resistant to TGFB
dependent growth inhibition [269]. In some genetic
backgrounds, Smad3 (-/-) homozygotes develop colorectal
tumors ranging from hyperplastic lesions and polyps to
highly aggressive tumors, which are very invasive and highly
metastatic, with dissemination to the lymph nodes [270]. The
Smad 4 null phenotype is similar to that of the Smad 2
knockout. Smad 4 (-/-) mice die before E7.5, are severely
growth retarded, fail to gastrulate, fail to form the egg
cylinder, . and show abnormal visceral endoderm
development [272]. It was originally reported that Smad 4

heterozygotis mice show no increase in tumorigenicity [272].

However, a recent report has shown that Smad4 heterozyous
mice develop gastric polyps that can develop into tumors at a
late age [273]. Furthermore, a compound heterozygote
mouse carrying mutations in the the APC (adenomatous
polyposis coli) gene (delta716) and Smad4 exhibited
intestinal polyps which developed into malignant tumors to a
greater extent than those in the simple APC heterozygotes,
suggesting that mutations in Smad4 play a significant role in
the malignant progression of colorectal tumors [274]. Smad
5 (-/-) mice die at E9.5 — E11.5, and have numerous defects
in angiogenesis, including enlarged vessels and fewer
smooth muscle cells. SmadS (-/-) homozygotes have
left/right asymmetry, craniofacial abnormalities, and they
undergo extensive mesenchymal apoptosis [275-277]. Smad
6 knockouts are viable, but have a number of cardiac
abnormalities, suggesting a role for Smad 6 in the
development and homeostasis of the cardiac system. These
Smad 6 (-/-) mice have hyperplasia of the cardiac valves,
outflow tract septation defects, aortic ossification and
elevated blood pressure [278].

FUTURE PERSPECTIVES

The TGFp signaling pathways have gained importance in

~ cancer research due to their opposing roles in both tumor

suppression and metastatic cancer promotion elicited via

- specific end effects. Many researchers have reported

conflicting evidence when undertaking very similar
experiments. How can some groups detect growth inhibitory
effects, and hence resistance to tumorigenesis, while others
report invasiveness and metastasis? Often times, cell type
specificity may be explained by a unique set of constitutively
expressed and/or inducible protein factors which affects the
internal cellular environment. However, in the case of TGF[,
the answer is much more complex due to the influence of the
local and/or overall environment of the target tissue. TGFf3
signaling can be affected by externally introduced agents, as
demonstrated in studies showing that smoking causes a

further increase in the plasma levels of TGFp in patients -

with diabetes, and that exposure to hydrogen peroxide causes
the induction of TGFB1 and an associated increase in ECM
components [310, 311]. The identity and roles of the various
chemicals or other agents introduced from the environment,
which affect TGFJ signaling and hence influence the
development or metastatic spread of tumors, is still awaiting
further research. These exogenous factors may cause specific
genetic or epigenetic alterations at certain hot spots
ultimately leading to localized deletions such as that of
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chromosome 18q and thus inactivation of target genes
[11,23,24,142,312,313]. Alternatively, these factors may
cause non-genetic altera-tions of the functional outcomes of
the various signaling events, such as the rerouting of
standard signaling pathways. The end results of these
changes that may contribute to cancer could be comiprised of,
but are not limited to, the prevention of cellular turnover due
to ablation of normal TGFf growth inhibition, inhibition of
apoptosis, increase in malignant conversion of célls
affording angiogenesis, tumor invasion and metastasis and
enhancement of the events that normally disable
immunosuppressive effects, - :

Althotigh the molecular basis of TGFBsignaling events
are. becoming: increasingly clear due to the discovery of
critical signaling mediators such as.the Smad proteins, much

* work remains for the research community. Of importance is

the need to unravel the end effects resulting from the various
combinatorial signaling events at the level of each signaling
event, the signaling cross talk and the environmental effects
that may’ ultimately be responsible for the development of
cancer. Additionally, there is an emerging general
acceptance that human TGFf signaling is mediated by
Smads, involving different R-Smads and the only known Co-
Smad, Smad4. However, recent studies might suggest
otherwise due to the evidence for TGFf mediated growth
inhibition in Smad4 disabled cells and due to- the
demonstration of the existence of Smad4 homologues in
other vertebrates [46, 314]. These observations strongly

. suggest that there might be other TGFp signaling pathways

operative in the cells, which involve other Smad4
homologues or Smad4 independent events. The rapid
development of high throughput genomic methodologies and

- data produced from the application of these methods is

expected to aid in understanding these complexities and in
providing new leads for delineating TGFB-mediated
signaling events. The availability of human' sequence data
can be taken advantage of to speed up the discovery of novel
genes as well as the discovery of new members of the Smad,
TGFBligand and TGFBreceptor families [315, 316].
Furthermore, the systematic use of high throughput methods
such as gene expression microarrays, SAGE (serial analysis
of gene expression) and proteomics in conjunction with gene
knockouts in cell lines and animal models may ultimately
help in determining the various players in the signaling
events as well as in eliciting their biological end effects
[281-283]. These studies would provide an overall picture of
TGF@signaling and help to determine the critical steps or
target genes in which inactivations may lead to cancer, thus
aiding in the identification of nodal points for targeting
therapeutic applications to contain and combat cancer.
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High frequency of chromosomal deletions elicited as losses of
heterozygosity is a hallmark of genomic instability in cancer.
Functional losses of tumor suppressor genes caused by loss
of heterozygosity at defined regions during clonal selection for
growth advantage define the minimally lost regions as their
likely locations on chromosomes. Loss of heterozygosity is
elicited at the molecular or cytogenetic level as a deletion, a
gene conversion, single or double homologous and
nonhomologous mitotic recombinations, a translocation,
chromosome breakage and loss, chromosomal fusion or
telomeric end-to-end fusions, or whole chromosome loss with
or without accompanying duplication of the retained
chromosome. Because of the high level of specificity, loss of
heterozygosity has recently become invaluable as a marker for
diagnosis and prognosis of cancer. The molecular defects for
the occurrence of loss of heterozygosity are derived from
disabled caretaker genes, which protect the integrity of DNA,
or chromosome segregator genes, which mediate faithful
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Genetic alterations and cancer

Human cancer is generally thought to develop as a result
of loss of or irreversible damage to critical genes in a
multistep process involving the accumulation of genetic
alterations. More than 100 years ago, Theodor Boveri
wrote a remarkable book, The Origins of Malignant Tumors
[1,2], in which he suggested chromosome missegregation
leading to aneuploidy, an abnormal balance of chromo-
somes, as the fundamental basis of cancer. The aneu-
ploidy hypothesis has since been abandoned in favor of
the gene mutation hypothesis [3,4¢¢]. However, selec-
tion of nonparental aggressive karyotypic variants of can-
cer cells caused by genetic instability and mutations
could be unified in aneuploidy to explain tumorigenesis

[5-7,8ee].

Overall, the genesis of cancer could be defined as the
manifestation of loss of or abnormal function of genes
affecting processes that maintain or regulate orderly nor-
mal cell function by both genetic and epigenetic mecha-
nisms. The genetic basis of these functional anomalies
could be derived from targeted aberrations in the regu-
latory elements or functional domains because of muta-
tions or loss caused by deletions of small or large con-
tiguous genetic material affecting nonessential but
critical genes required for normal differentiated function.
During localized evolution, tumor cells aggressively pro-
liferate and invade and spread to distant sites. At the
same time, the genetic material could undergo accompa-
nying changes, potentially in small increments, to aid in
clonal evolution, increasing the genetic heterogeneity of
the tumor cells. Therefore, the genetic outlook and the
biochemical properties of the tumor cells at the time of
initiation, could be entirely different from their charac-
teristics at an advanced stage of cancer. These abnor-
malities in the blueprint of the genetic material could be
derived from defective oncogenes, which become acti-
vated because of alteration of one allele, or from tumor
suppressor genes (T'SGs), whose functionality is elimi-
nated when both alleles are damaged or lost.

Loss of heterozygosity and mapping of

tumor suppressor genes in cancer

A statistical study of a childhood cancer, retinoblastoma,
led to the proposal of the two-mutation hypothesis for
the initiation of cancer, in which the first mutation could
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be either germinal or somatic and the second was always
somatic [9,10,11#e]. This hypothesis was experimentally
confirmed in subsequent studies by the demonstration of
loss of heterozygosity (ILOH) at the RB/ locus in retino-
blastoma patients carrying a germ line mutation of the
RB1 gene [12,13]. LOH, defined as a loss of one allele at
a constitutional (germline) heterozygous locus, has been
accepted as a hallmark of one of the two hits required for
the inactivation of T'SGs in cancer.

Loss of heterozygosity analyses of solid tumors have not
only enabled the delineation of specific minimally lost
regions (MLRs) as the likely locations of critical TSGs
but also provided the molecular portrait of the pattern of
accumulation of genetic alterations in a multistep pro-
gression of cancer [14-18,19#¢]. Confirmed TSGs could
have been isolated by either linkage studies or LOH
analyses of sporadic tumors, because the MLLRs almost
always point to the map position of critical TSGs in-
volved in different types of cancers [19¢¢,20-30,31¢]. A
TSG involved in a sporadic cancer could be a familial
gene for a different cancer, and vice versa (Table 1).

A plethora of evidence supporting sites of recurrent
LOH, which underlies the growth advantage required
for tumorigenesis, still has not resolved the question of
whether the mutation or LOH occurs first to initiate
cancer. Localized double deletions (homozygous) target-
ing a specific gene or locus are rare. LOH patterns and
the extent of each deletion in clonally selected tumor
cells are highly specific to the chromosome [19ee].
These discrepancies apparently reflect the size of the
chromosome (7¢, smaller chromosomes exhibit whole
chromosome losses more frequently, whereas larger ones
predominantly harbor partial losses) and selective pres-
sure imposed by the remaining genes, which are essen-
tial for cell survival or provide a growth advantage during
clonal selection of cells that eventually form the tumor.
Overall, when one of the hits is LOH encompassing the
entire chromosome, a portion, or a localized region, the
second hit is inactivation of the actual target gene caused
by a second reciprocal LOH event (homozygous), a mu-

Table 1. Tumor suppressor genes and cancers

tation, or an epigenetic alteration resulting in loss of gene
function.

Despite the confirmation of two-hit inactivation of TSGs
in several cancers, the mode of inactivation itself may
vary in a gene-specific or tumor-specific manner. Two of
the most historically celebrated TSGs are RA! and p53.
Retinoblastoma and its associated tumors, such as osteo-
sarcoma, were found to harbor consistently either a ho-
mozygous deletion of the R4/ locus at 13q14 or a muta-
tion of the remaining allele in a tumor with LOH [17]. A
consistent region of LOH at 17p13, observed initially in
colon cancer, led to the rediscovery of the p53 gene as a
TSG [32,33]. Missense mutations were the primary
mechanism of inactivation of the remaining allele, and
p53 was later confirmed as the most frequent target for
inactivation in a variety of cancers [32-34]. These obser-
vations are consistent with mutational inactivation of the
target gene followed by LOH in familial cancers (eg, ret-
inoblastoma, Li-Fraumeni) as the predominant mecha-
nism caused by a predisposing genetic alteration,
whereas in sporadic cancers, the mode of inactivation of
the target gene may be variable, but the ultimate out-
come is the loss of function. Exceptions to these rules
have been observed in several cancers, and whether mu-
tation or LOH occurs first in target inactivation is being
debated [350¢,36e¢ 37¢] Although this debate is primar-
ily based on studies of sporadic cancers in which a normal
or mutant allele of the suspected target TSG has been
observed in tumors exhibiting LOH, the explanation of
these assessments could be more complicated because of
the potential presence of multiple target genes, alternate
modes of inactivation such as epigenetic silencing of
gene expression by promoter methylation, or linkage dis-
equilibrium with the true target gene.

The inactivation of the Smad2 and Smad4 genes, local-
ized to the MLR ar 18921 in colorectal cancer, is consis-
tent with the multiple target gene theory, in which true
inactivation of both genes has been demonstrated
[25,38]. The p16 (CDKNZ2A) gene localizes to chromo-
some 9p21, also a hot spot for inactivation by LOH. Al-

Gene Map position  Familial cancer syndromes Associated sporadic cancers
APC 5q21 Adenomatous polyposis coli  Colon and brain cancers
and Turcot syndrome
BRCAT1 17921 Breast/ovarian cancer Breast, ovarian, and prostate cancer
BRCA2 13912-13 Breast cancer Breast, ovarian, and pancreatic cancers
NF1 17911.2 Neurofibromatosis type | Neurofibromatosis, colon carcinoma, and astrocytoma
NF2 22q12.2 Neurofibromatosis type Il Vestibular schannoma, meningioma, and ependymoma
p16M7s? 9p21 Melanoma Glioblastoma, melanoma, and cancers of the pancreas, breast, and other organs
p53 17p13 Li-Fraumeni syndrome 50% of all cancers, including breast, brain, lung, colon, bladder, ovarian, and prostate
RB1 13g14.3 Retinoblastoma Retinoblastoma, osteosarcoma, bladder carcinoma, and cancers of the breast and
lung
SMAD4 18921 Juvenile polyposis Pancreatic, colon, and lung cancers
PTEN 10924-25 Cowden disease Brain, breast, and prostate cancers
VHL 3p25-26 von Hippel-Lindau syndrome  Renal cell carcinoma and pheochromocytoma

wr1 11p13-15 Wilm tumor

Nephroblastoma
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terations in p76 occur frequently in lung, skin, and most
other common forms of human cancer [39,40]. In many
tumor types, point mutations in the p/¢ gene are rare,
and LLOH of 9p21 is not always observed in tumors.
However, there is increasing evidence for loss of p76
gene function via transcriptional silencing associated
with abnormal DNA methylation of the transcription
regulatory region [41]. Allele-specific methylation at par-
ticular sites may be somatic or may occur in the germ
line, affecting all cells. Therefore, the two-hit hypothesis
of TSG inactivation by Knudson [9-11] could be ex-
tended to explain that the first hit, the second hit, or
both could result from methylation, leading to complete
inactivation of the gene [42,43¢¢]. The exploitation of
the known modes of inactivation of the TSGs to tumors
harboring LOH of a specific region may not be sufficient
to account completely for the two hits required for the
inactivation in all tumors. This situation has been fre-
quently encountered with several TSGs, including p/6
and PTEN, during the analyses of melanomas and glio-
blastomas, and even with p53 in some cases of Li-
Fraumeni, implying that these suggested target genes
may be in linkage disequilibrium with the true target
gene or may be inactivated at a different point of the
functional pathway controlled by these genes [44,45e

Figure 1. A model for molecular elicitation of loss of heterozygosity
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46,479#,48,49]. Delineation of all candidate genes local-
ized to the ML.Rs and painstaking evaluations to deter-
mine their loss of function unambiguously would be nec-
essary to answer these questions. Assignment of true
target genes is a tedious process but could be expedited
by technologic advances in analyzing loss of function of
genes and improvements in making accurate genome se-
quence data available in a short time using a high
throughput method.

Identification of target genes is actively pursued on one
front, but utilization of available LOH data as markers
for diagnosis and prognosis of cancer also has become
generally accepted. A higher frequency of consistent
L.OH at defined chromosomal regions critical for specific
cancers has made this a useful, reliable DNA marker for
diagnosis and prognosis of cancer, regardless of whether
the target gene has been identified [50-53].

Molecular elicitation of loss

of heterozygosity

A heuristic model summarizing the molecular elicitation
of LOH in a variety of tumors is presented in Figure 1.
Variations in the patterns in which LOH could occur
include the following:

Events such as localized deletions with accompanying
chromatin loss resulting from one or two double-strand
DNA breaks, gene conversion, single or double mitotic
recombination, translocation, chromosomal nondisjunction,
and chromosomal nondisjunction accompanied by
duplication of the remaining chromosome could lead to
loss of heterozygosity (LOH). The loss of genes localized
to the regions of LOH could result in haploinsufficiency or
unmasking of the functional expression of a recessive or
deficient allele.
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(1) Localized loss of one allele or gene in a highly spe-
cific manner could be accomplished by a simple deletion
resulting from two double-strand breaks or double mi-
totic recombination involving the homologous chromo-
somal arm. When this occurs, the unaffected genetic ma-
terial remains contiguous. If the loss involved a specific
gene, it can be regarded as a gene conversion. Allele-
specific or gene-specific probes and flanking probes
would be necessary to detect such alterations. Although
these microdeletions are difficult and laborious to find
because of the enormous amount of effort required to
analyze numerous tumor samples, at least two recent
reports, one analyzing the NF7 locus on 17q in neurofi-
bromas and the other delineating a highly specific local-
ized LOH on chromosome 1p for colon cancers, substan-
tiate the claim that interstitial deletions targeting a single
gene or allele could occur [19¢e,54e¢]. Additionally,
highly specific, localized homozygous deletions observed
within a gene or locus also indicate that a double hit
could occur simply by targeted loss of genetic material
[25,55-57].

(2) Extensive loss of genetic material involving a portion
of or an entire chromosomal arm could be accomplished
by a double-strand break with the loss of genetic material
distal to the break, a single mitotic recombination involv-
ing the homologous pair of chromosomes, or reciprocal or
nonreciprocal translocation. Mitotic recombination is the
result of a reciprocal exchange of genetic material be-
tween nonsister chromatids of homologous or nonho-
mologous chromosomes in mitotic cells as detected by
substitution of contiguous markers with reference to an
established marker. Although these are the most com-
mon genetic abnormalities described for tumor cells, in a
recent landmark study, the authors confirmed the previ-
ous observations and suggestions and provided compara-
tive and direct molecular genetic and cytogenetic evi-

dence from the same tumor-derived cells for the
existence of isochromosomes, translocations, and com-
plete loss of genetic material to support additional
mechanisms for LOH [12,14,19¢ 25 30,57-61].

(3) Loss of a whole chromosome is generally accom-
plished by nondisjunction defects in chromosome segre-
gation [26,32]. However, the existence of multiple copies
of chromosomes in tumor cells deemed to have lost one
member of the homologous pair by cytogenetic analyses
confirms reduplication of the remaining chromosome
leading to homozygosity [19#¢,59,62,63].

Roles of caretaker and chromosome
segregator genes in loss of heterozygosity
Multiple interconnected mechanisms have evolved to
ensure the maintenance and faithful partitioning of ge-
netic material at cell division. The failure of cellular
functions to maintain the genetic integrity of the genome
by faithful DNA replication, DNA damage repair, telo-
mere protection, segregation of chromosomes at mitosis,
or unscheduled recombination could lead to genomic in-
stability, which is elicited as LOH. The two major cat-
egories of chromosomal abnormalities that involve por-
tions of a chromosome or an entire chromosome could be
considered derived from defects in carctaker genes or
chromosome segregator genes, respectively (Fig. 2).
Broadly, a caretaker gene is any gene required to main-
tain the integrity of DNA during processes such as DNA
replication, repair, or recombination; telomere mainte-
nance and protection; and chromosome packaging; or, to
protect the DNA from nucleases and other adversities of
intracellular physiologic byproducts [64-66,67¢,68¢,69ee].
The chromosome segregator genes are those required to
mediate orderly disjunction of sister chromatids to the
daughter cells during a mitotic cell division. These genes
could include all those involved in determining the cen-

Figure 2. A model for the genetic and molecular mechanistic basis of loss of heterozygosity

Defective caretaker genes

Defective chromosome segregator genes

Loss of heterozygosity (LOH) occurs because of defective
caretaker genes, defective chromosome segregator
genes, or both. Defects in both could promote LOH
simultaneously in tumor cells affecting the same or
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chromosome arm or a portion, and defective segregator
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chromosome with or without accompanying duplication of
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tromere structure, sister chromatid cohesion, and the
anaphase promoting complex, and others required for
the proper assembly of the bipolar spindle apparatus to
ensure faithful segregation of genetic information [70,71,
7200,73,740].

Single-strand DNA interruptions, breaks, or gaps could
arise during DNA damage from a variety of causes, such
as exposure to ultraviolet radiation, hydrogen peroxide or
alkylating agents, DNA replication accompanied by pro-
cesses such as defective nucleatide excision repair or
mismatch repair, or defective DNA replication resulting
in the accumulation of the lagging strand caused by de-
fective DNA ligase [65,75-78]. Single-strand DNA gen-
erated during these events could enhance mitotic recom-
bination and lead to an exchange of genetic material
from homologous or nonhomologous chromosomes. A
number of genetically determined disorders are known
to cause susceptibility to chromosomal breaks, cause in-
creased frequency of breaks, and promote interchanges
that occur either spontaneously or after exposure to vari-
ous DNA-damaging agents [79ee].

The DNA lesions resulting in double-strand breaks
(DSBs) are among the most fatal, because they disrupt
the continuity of the DNA template essential for DNA
replication and transcription. A broken chromatid acquir-
ing a new telomere leads to the loss of DNA distal to the
break, resulting in LOH. DSBs could arise because of
stalling of the replication fork during DNA synthesis;
defective DNA repair; DNA damaging effects such as
ionizing radiation; cleavage by specific enzymes such as
V(D)J] recombinase; or recurrent chromosomal breaks at
susceptible DNA sequences caused by tandem repeat
DNA instability at microsatellite (CCG)n, AT-rich mini-
satellites, other minisatellites, or defined or unique sig-
nal sequences [80-84]. DSBs are highly recombinogenic
and represent a major threat to the integrity of the ge-
nome. Although most DSBs are rejoined through repair
pathways known as nonhomologous end joining (NHE])
or homologous end joining (HE]J) pathways, they could
also initiate homologous or non homologous strand inva-
sion and recombination and repair [78,81,85,86¢¢,87].
Mutations in the genes involved in these pathways dis-
play dramatic genomic instability ranging from chromo-
somal fragmentation to nonreciprocal translocations
[88ee 89 90ee]. Homologous and nonhomologous recom-
bination and repair, HEJ, and NHE] involving homolo-
gous chromosomes and nonhomologous chromosomes
would lead to partial chromosome homozygosity result-
ing in LOH (Fig. 2). The NHE] and HE] pathways
would create translocations and isochromosomes, which
could be detected cytogenetically using chromosome
painting methods [19ee].

Telomeres are specialized nucleoprotein complexes that
serve to protect the ends of linear chromosomes from
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recombination, fusion, and recognition as damaged
DNA. Lack of functional telomeres in rapidly dividing
cancer cells could occur because of defects in or low
levels of telomerase or telomere binding proteins such as
TRF1 and TRF2 and cause chromosome end-to-end
(telomeric) fusion. The fusion-bridge-breakage process
of chromosomes fused at their telomeres during chromo-
somal disjunction could initiate a wide array of chromo-
somal aberrations caused by the generation of DSBs,
which could, in turn, cause a chain of events such as
DNA strand invasions and chromosomal fusions
[91¢,92 93ee¢]. If telomere attrition caused by loss of cap-
ping activity and severe genomic instability continues in
cancer cells, it may lead to crisis and cell death
[91,93e¢]. Therefore, in most human cancers, telomer-
ase usually becomes activated at the time of transition to
advanced invasive cancer, enabling stable inheritance
of these genetic alterations to the progeny cells
[919,92,93¢¢]. The telomeric end-to-end fusions result-
ing in metacentric chromosomes and translocations in-
volving portions of chromosomes also leads to partial
chromosome homozygosity [19e¢] (Fig. 2).

Despite LOH analysis indicating loss of one of the chro-
mosomes of the homologous pair caused by reduction to
homozygosity based on all the markers analyzed, cyto-
genetic analysis by chromosome painting has revealed
the existence of multiple copies of the chromosome be-
ing investigated [199¢]. These results are consistent with
defects in chromosome segregator genes coupled with
duplication of the remaining chromosome, leading to
whole chromosome homozygosity resulting in LOH
(Fig. 2). The defects in chromosome segregator genes
that are required for faithful disjunction of sister chro-
matids to the daughter cells could comprise genes that
(1) participate in forming the centromere structure, (2)
associate with the centromere during the metaphase to
anaphase transition, (3) mediate the sister chromatid co-
hesion, and (4) play a role in the anaphase-promoting
complex, including the proper assembly of the bipolar
spindle apparatus, to ensure faithful segregation of ge-
netic information [70,71,72e¢,73,74,94,95,96¢,97,98,
99ee], However, study of these genes to determine the
nodal targets most frequently affected in cancers is still
in its infancy. Although Cahill ez 2/ [100%] demon-
strated inactivation of ABUB/ and 4BUBRI genes in co-
lorectal cancers exhibiting chromosomal instability, sub-
sequent progress has been slow, perhaps because of the
large number of target genes that could become inacti-
vated or the epigenetic mechanisms of inactivation of
these genes [101,102,103¢¢]

Conclusions

Despite an enormous amount of genomic sequence and
contig data becoming available from the human genome
project, the major challenge is to find the disease-causing
genes that will make an impact on overall health care and
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management. The exploitation of LOH analyses using
traditional and high throughput methods such as bacte-
rial artificial chromosome microarrays to define MLRs
provides a distinct advantage to cancer geneticists in dis-
covering target T'SGs in this era of genomics. The LOH
studies have not only provided a view of the genetic
abnormalities of complex diseases such as cancer but also
stimulated the drive to obtain a better understanding of
the various cellular processes such as DNA repair, repli-
cation, recombination, telomere maintenance, and cell
division by providing excellent, highly discernible visual
examples resulting from their defects.
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